
Extension Complexity for Matroid Union*

Ayush Agarwal
ayushagarwal@cse.iitb.ac.in

IIT Bombay

Soham Joshi
sohamjoshi@cse.iitb.ac.in

IIT Bombay

February 21, 2024

Abstract

Given a matroid, or any polytope, its extension complexity was characterised Yannakakis
[Yan88]. The extension complexity of matroid intersection is trivially polynomial given that
the orignal matroids have polynomial extension complexity. This is because the constraints
describing matroid intersection have a nice formulation. However, the same problem for union
of matroids remains open. In this work, we show that in fact, the union of matroids also a
polynomial upper bound to the extension.

*This was a credited research project under the supervision of Prof. Rohit Gurjar at IIT Bombay.
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1 Introduction

The extension complexity of a polytope 𝑃 is the smallest number of facets among convex polytopes
𝑄 that can have 𝑃 as a projection. In this case, 𝑄 is called an extended formulation of 𝑃 and it may
have a higher dimension than 𝑃. The extension complexity of a polytope is a natural question to
ask since many problems can be encoded as a combination of linear constraints. If this admits
a small extended formulation, then standard techniques like linear program solvers can be used
to solve the problem. In 1980s, Swart [Swa87] attempted to prove that there is a polytope with
only polynomial many facets that projects down to the TSP polytope. Note that a polynomial size
extended formulation for the TSP polytope would imply 𝑃 = 𝑁P. The purported linear programs
were extremely complicated to analyze. However, in a breakthrough paper, Yannakakis [Yan88]
refuted all such attempts by showing that every symmetric linear program (LP) for the TSP poly-
tope has exponential size. Since the proposed LP by Swart was symmetric, that refuted Swart’s proof.

However, the question of extension complexity of non-symmetric LPs remained open. How-
ever, in 2010, Kaibel, Pashkovich, and Theis [KPT10] gave examples of polytopes that do not have
polynomial size symmetric extended formulations, but that do have polynomial size asymmetric
extended formulations. This rekindled interest in the lingering question. In another breakthrough
paper in 2012, Fiorini, Masser, Pokutta, Tiwary, and de Wolf [FMP+12] finally proved that the TSP
polytope does not admit any polynomial size extended formulation, symmetric or not.

Further investigation was done into the extension complexity of various other polytopes, for
instance several kinds of matroid polytopes. In particular, we know that perfect matchings for
a general graph can be found in polynomial time via edmond’s algorithm. Hence, it was quite
a surprise when Rothvoss [Rot17] showed that the perfect matching polytope (convex hull of
all perfect matchings of the complete graph 𝐾𝑛) does not admit any polynomial size extended
formulation.

In the case of matroids, most of the well-known types like graphic matroid, transversal ma-
troid, partition matroid, etc. have a small extension complexity. Recently it was shown by Aprille &
Fiorini [AF19] that independence set polytopes of regular matroids have small extension complexity.
Moreover, Iwata, Kamiyama, Katoh, Kĳima, and Okamoto [IKK+14] have shown that 𝑘 − 𝑙 sparsity
matroids have polynomial extension. It is known that union of matroids is also a matroid, and
it can be found efficiently (see [S+03]). So, if the initial matroids have a small LP description, it
is natural to expect that their union also has a small description. In this work, we show that this
intuition is indeed correct, that is, given matroids with small extension, their union also admits a
small extended formulation.

1



2 Preliminaries

Matroid theory originated in the middle of the 1930s. There is a huge literature on matroids by now.
For an introduction, see for example the excellent textbooks of Oxley [Oxl06] or Schrĳver [S+03].
Moreover, our problem also deals with the extension complexity of matroids, for which refer the
excellent lecture notes by Li [Li18] as an introduction. Below we give some basic definitions and
facts about matroids and extension complexity of polytopes.

2.1 Matroid

A matroid 𝑀 is a pair 𝑀 = (𝐸, 𝐼), where 𝐸 is the finite ground set and 𝐼 ⊆ 𝑃(𝐸) is a nonempty
family of subsets of E that satisfies the following two axioms.

1. Closure under subsets. For every 𝐼 ∈ ℐ and 𝐽 ⊆ 𝐼 we have 𝐽 ∈ ℐ.

2. Augmentation property. For every 𝐼 , 𝐽 ∈ ℐ where |𝐼 | < |𝐽 |, there is an 𝑗 ∈ 𝐽 such that 𝐼 ∪ 𝑗 ∈ ℐ.

We denote 𝑚 = |𝐸 | throughout the paper. The sets in 𝐼 are called the independent sets of 𝑀. An
inclusion-wise maximal set 𝐵 ∈ ℐ is called a base. Note that by the augmentation property, all base
sets have the same size. Let ℬ ∈ ℐ denote the collection of base sets.

2.1.1 Matroid Rank

. Motivated by Linear Algebra, there is a rank-function of a matroid that is defined for every subset
𝐴 ⊆ 𝐸 as the size of the largest independent set that is contained in 𝐴,

𝑟𝑎𝑛𝑘(𝐴) = 𝑚𝑎𝑥{|𝐼 | | 𝐼 ∈ ℐ and 𝐼 ⊆ 𝐴}

The size of every maximal independent set is rank(E). This number is called the rank of M. The
matroid problem is to compute a maximal independent set.

An important property of the rank-function is its submodularity. In general, a function
𝑓 : 𝑃(𝐸) → ℝ is called submodular, if for any sets 𝑆, 𝑇 ⊆ 𝐸, we have

𝑓 (𝑆) + 𝑓 (𝑇) ≥ 𝑓 (𝑆 ∪ 𝑇) + 𝑓 (𝑆 ∩ 𝑇)

.

2.1.2 Matroid Polytope

The polytopes we consider in this paper are convex polytopes defined as the convex hull of finitely
many points in ℝ𝑚 . Any convex polytope 𝑃 can be described as the intersection of halfspaces, i.e.,
as 𝑃 = {𝑥 ∈ ℝ𝑚 |𝐴𝑥 ≤ 𝑏}, for some matrix 𝐴 ∈ ℝ𝑘×𝑚 and vector 𝑏 ∈ ℝ𝑘 . A face of the polytope 𝑃 is
the set of points in 𝑃 minimizing or maximizing a linear function. If the polytope P is described by
𝐴𝑥 ≤ 𝑏, then any face of 𝑃 can be described as {𝑥 ∈ 𝑃 | 𝐴′

𝑥 ≤ 𝑏
′}, where (𝐴′

𝑏
′) is some subset of

the rows of (𝐴 𝑏). With every matroid, there is an associated matroid polytope. This polytope is
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crucial for our arguments.
For a set 𝐼 ∈ 𝐸, its characteristic vector 𝑥𝐼 ∈ 𝑅𝐸 is defined as

𝑥 =

{
1, if 𝑒 ∈ 𝐼
0, otherwise

For any collection of sets 𝐴 ⊆ 𝑃(𝐸), the polytope 𝑃(𝐴) ⊂ 𝑅𝐸 is defined as the convex hull of the
characteristic vectors of the sets in 𝐴,

𝑃(𝐴) = 𝑐𝑜𝑛𝑣{𝑥𝐼 | 𝐼 ∈ 𝐴}

For a matroid 𝑀 = (𝐸, 𝐼), its matroid polytope is defined as 𝑃(𝐼) ⊂ ℝ𝐸, i.e., the convex hull of the
characteristic vectors of the independent sets. The points {𝑥𝐼 | 𝐼 ∈ ℐ} are the corners of the matroid
polytope 𝑃(𝐼). Edmonds [Edm70] gave a simple description of this polytope which uses the rank
function of the matroid (see also [Sch03]). For convenience, we define for any 𝑥 ∈ ℝ𝐸 and 𝑆 ⊆ 𝐸,

𝑥(𝑆) =
∑
𝑒∈𝑆

𝑥𝑒

Lemma 2.1 ([Edm03]). For a matroid (𝐸, 𝐼) with rank function 𝑟, a point 𝑥 ∈ ℝ𝐸 is in 𝑃(𝐼) iff

𝑥𝑒 ≥ 0 ∀ 𝑒 ∈ 𝐸(1) (1)
𝑥(𝑆) ≤ 𝑟(𝑆) ∀ 𝑆 ⊆ 𝐸 (2)

It is easy to see that any 0-1 corner of the polytope given by (1) and (2) corresponds to an
independent set in ℐ. The nontrivial part is to show that the described polytope does not have a
non-integral corner. Let ℬ be the family of base sets of the matroid (𝐸,ℐ). Let n be the rank of the
matroid, i.e., the size of any base set. The matroid base polytope, defined as 𝑃(𝐵), is clearly a face
of the matroid polytope 𝑃(𝐼). Putting the following equation together with (1) and (2) will give a
description of 𝑃(𝐵),

𝑥(𝐸) = 𝑛 (3)

2.1.3 Matroid Intersection

The matroid intersection problem is, given two matroids 𝑀1 = (𝐸, 𝐼1) and 𝑀2 = (𝐸, 𝐼2) over the
same ground set, compute a maximum size set in 𝐼1 ∩ 𝐼2, the common independent sets. Note that
in general (𝐸, 𝐼1 ∩ 𝐼2) is not a matroid anymore.

2.1.4 Matroid Intersection Polytope

The intersection of two matroids also has an easy polytope description: Edmonds [Edm70] showed
a surprising result that one can describe the matroid intersection polytope 𝑃(𝐼1 ∩ 𝐼2) just by putting
together the constraints of the two matroid polytopes 𝑃(𝐼1) and 𝑃(𝐼2) (see also [S+03])
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Theorem 2.2 ([Edm03]). For two matroids (𝐸, 𝐼1) and (𝐸, 𝐼2),

𝒫(𝑀1 ∩𝑀2) = 𝒫(𝑀1) ∩ 𝒫(𝑀2)

That is, a point 𝑥 ∈ ℝ𝐸 is in the polytope 𝒫(𝑀1 ∩𝑀2) iff

𝑥𝑒 ≥ 0 ∀ 𝑒 ∈ 𝐸 (4)
𝑥(𝑆) ≤ 𝑟1(𝑆) ∀ 𝑆 ⊆ 𝐸 (5)
𝑥(𝑆) ≤ 𝑟2(𝑆) ∀ 𝑆 ⊆ 𝐸, (6)

where 𝑟1 and 𝑟2 are the rank functions of the two matroids, respectively.

Let ℬ1 and ℬ2 be the families of base sets of the matroids (𝐸, 𝐼1) and (𝐸, 𝐼2), respectively. Note
that there can be a common base set only if the two matroids have same rank, say n. To obtain the
common base polytope 𝑃(𝐵1 ∩ 𝐵2) one just needs to put the constraint 3 together with inequalities
4, 5 and 6.

2.1.5 Chaining tight sets

In this section, we state a lemma (see [S+03]) which expresses any tight constraint as a linear
combination of tight constraints obtained by a chain of sets.

Definition 2.3 (Tight sets). Let ℳ be a matroid with the rank function 𝑟. Let 𝒙 ∈ 𝒫(ℳ) (matroid
polytope). We call a set 𝑆 a tight set of 𝒙 with respect to 𝑟 if 𝑥(𝑆) = 𝑟(𝑆)

Lemma 2.4 (Uncrossing operation). Let ℳ be a matroid with rank function 𝑟, and let 𝒙 ∈ 𝒫(ℳ). If 𝑆
and 𝑇 are tight sets of 𝒙 with respect to 𝑟, then so are 𝑆 ∪ 𝑇 and 𝑆 ∩ 𝑇.

Lemma 2.5 (Maximal Chain of Tight Sets). Let ℳ be a matroid with rank function 𝑟, and let 𝒙 ∈ 𝒫(ℳ).
Let 𝒞 = {𝐶1 , · · · , 𝐶𝑘} with 𝜙 ⊂ 𝐶1 ⊂ · · · ⊂ 𝐶𝑘 be an inclusion-wise maximal chain of tight sets of 𝒙 with
respect to 𝑟. Then every tight set 𝑇 of 𝒙 with respect to 𝑟 must satisfy 𝜒𝑇 ∈ span{𝜒𝐶 : 𝐶 ∈ 𝒞}

2.1.6 Partition Matroid

Partition matroid is a matroid in which 𝐸 is partitioned into (disjoint) sets 𝐸1 , 𝐸2 , .., 𝐸𝑙 and

𝐼 = {𝑋 ⊆ 𝐸 : |𝑋 ∩ 𝐸𝑖 | ≤ 𝑘𝑖 ∀ 𝑖 = 1, .., 𝑙},

for some given parameters 𝑘1 , .., 𝑘𝑙

2.1.7 Partition Matroid Polytope

For a given partition matroid 𝑃 = (𝐸,ℐ) and partition 𝐸1 , 𝐸2 , .., 𝐸𝑙 , a point 𝑥 ∈ 𝑅𝐸 is in the polytope
𝑃(𝐼1 ∩ 𝐼2) iff

𝑥𝑒 ≥ 0 ∀ 𝑒 ∈ 𝐸 (7)
𝑥(𝐸𝑖) ≤ 𝑟1(𝐸𝑖) ∀ 𝑖 (8)
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2.1.8 Matroid Union

Matroid union of 𝑀1 , 𝑀2 , 𝑀3 , .., 𝑀𝑘 is defined as

𝑀 = 𝑀1 ∨𝑀2 ∨ .. ∨𝑀𝑘 = (∪𝑘𝑖=1𝑆𝑖 ,ℐ = {∪𝑘𝑖=1𝐼𝑖 |𝐼𝑖 ∈ ℐ})

We can show that M is a matroid, and derive the rank function for it which is given by,

𝑟𝑚(𝑈) = min
𝑇⊆𝑈

[
𝑈\𝑇 +

𝑘∑
𝑖=1

𝑟𝑀𝑖
(𝑇 ∩ 𝑆𝑖)

]
2.2 Extension Complexity

Given a polytope 𝑃 ⊆ ℝ𝑛 as a convex hull of finitely many points (called vertices) in ℝ𝑛 , by
Minkowski- Weyl theorem, it is equivalent to a bounded polyhedron𝑄 that is described by a system
of linear equalities. Let |𝑄 | denote the number of linear inequalities in 𝑄’s description. There
might be different LP formulations for the same polytope. Now, LP solvers can give a solution to an
optimization problem on this polytope if the LP formulation is polynomial in |𝑄 |. Hence, there are
two directions to investigate, as given in [Li18].

1. Find another description 𝑄′ with polynomially many inequalities;

2. Find a higher dimension polytope (bounded polyhedron) 𝐻 ⊆ ℝ𝑘 (where 𝑘 > 𝑛) such that it
projects to 𝑃, and 𝐻 has a 𝑝𝑜𝑙𝑦(𝑛) description.

In some cases, it can be shown that 1 is not possible by showing that any description in ℝ𝑛 has
exponential size, hence we can only turn to 2. Note that any optmization problem over 𝑃 can be
done by optimizing the same objective function over 𝐻.

Definition 2.6. Let 𝑃 ⊆ ℝ𝑛 be a polytope, a polytope 𝐻 ⊆ ℝ𝑘 in a higher dimensional space is
called an extended formulation of 𝑃 if 𝜋(𝐻) = 𝑃, where 𝜋 : ℝ𝑘 → ℝ𝑛 is the projection map. The
extension complexity of 𝑃 denoted by 𝑥𝑐(𝑃), is defined to be :

𝑥𝑐(𝑃) := min
𝑄: 𝑄 is an extended formulation of 𝑃

|𝑄 |

We say 𝑃 has a compact formulation if 𝑥𝑐(𝑃) = 𝑝𝑜𝑙𝑦(𝑛).

Now, linear programs with compact formulations as defined above can be solved in PTIME by
using an LP solver on the extended formulation of the LP. Note that if a polytope does not have a
compact formulation, that does not imply that the problem cannot be solved in PTIME, one of the
most famous examples being the matching polytope. Finding a maximum matching for a general
graph has a polynomial time algorithm, but it has been shown recently that the matching polytope
has no compact formulation [Rot17].
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2.2.1 Non-negative rank characterization

A characterization of the extension complexity was given by [Yan88] in terms of the non-negative
rank of the “slack matrix" associated with the polytope.

Definition 2.7 (Slack matrix). Given a polytope 𝑃 ⊆ ℝ𝑛 suppose it is described by 𝑃 := {𝑥 ∈ ℝ𝑛 :
𝐴𝑥 ≤ 𝑏} where 𝐴𝑚×𝑛 is a matrix and 𝑏 ∈ ℝ𝑚 is a vector. Let the set of vertices of 𝑃 be {𝑧1 , 𝑧2 , · · · , 𝑧𝑘}.
The slack matrix of 𝑃 under the above description is defined to be the matrix

𝑆𝑚×𝑘 := (𝑏 − 𝐴𝑧1 , 𝑏 − 𝐴𝑧2 , · · · , 𝑏 − 𝐴𝑧𝑘) ∈ ℝ𝑚×𝑘
≥0

Definition 2.8 (Non-negative rank). Given a matrix 𝑆𝑚×𝑘 , its non-negative rank, denoted by rank+(𝑆),
is defined to be the least integer 𝑟 ∈ ℕ, such that 𝑆 = 𝐿𝑚×𝑟𝑅𝑟×𝑘 where 𝐿 and 𝑅 are two non-negative
matrices.

Now, with these definitions, we state Yannakakis’s characterization of the extension complexity
of a polytope.

Theorem 2.9 ([Yan88]). For any polytope 𝑃 = {𝑥 ∈ ℝ𝑛 : 𝐴𝑥 ≤ 𝑏} whose dimension ≥ 1, let 𝑆 be its slack
matrix, one has

𝑥𝑐(𝑃) = rank+(𝑆)

3 Extension for union of two matroids

In this section, we show how to obtain a small extended formulation (extension) for the matroid
union polytope, given small extensions for two matroid polytopes. To begin, we shall prove that
this follows for the matroid intersection polytope trivially.

3.1 Matroid Intersection has small extension

Suppose you have 2 matroids 𝑀1 = (𝑆1 ,ℐ1) and 𝑀2 = (𝑆2 ,ℐ2), for which we have a compact
formulation. Now, we wanted to give the extension complexity for 𝑀1 ∨𝑀2. Edmond showed
that 𝒫(𝑀1 ∧𝑀2) = 𝒫(𝑀1) ∩ 𝒫(𝑀2) where 𝒫 represents the corresponding polytope. Hence, the
matroid intersection polytope is given by taking constraints 𝒫(𝑀1) and 𝒫(𝑀2) together. Let 𝒙(𝑺)
denote the projection of 𝒙 onto the coordinates of 𝑆, where 𝑆 is a set of variables.

Lemma 3.1 (Extension of Matroid Intersection). Given matroids 𝑀1 = (𝑆,ℐ1) and 𝑀2 = (𝑆,ℐ2) which
have a compact formulation, their matroid intersection polytope has a compact formulation

Proof. Let𝑀1 = (𝑆,ℐ1),𝑀2 = (𝑆,ℐ2) correspond to polytopes𝒫(𝑀1) and𝒫(𝑀2), where𝑃(𝑀1), 𝑃(𝑀2)
both have constraints over the variables 𝑋 = {𝑥𝑖 : 𝑖 ∈ 𝑆}. Since, both of them have a compact
formulation, let 𝑄(𝑀1), 𝑄(𝑀2) denote their extended formulations, where |𝑄(𝑀1)| = 𝑝𝑜𝑙𝑦(|𝑆 |) and
|𝑄(𝑀2)| = 𝑝𝑜𝑙𝑦(|𝑆 |). Then consider another polytope 𝑄(𝑀1 ∧𝑀2) given by taking constraints of
𝑄(𝑀1),𝑄(𝑀2). Now,𝑄(𝑀1 ∧𝑀2) clearly has 𝑝𝑜𝑙𝑦(|𝑆 |) constraints. Now, we show that𝑄(𝑀1 ∧𝑀2)
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is an extension of 𝒫(𝑀1 ∧𝑀2). Let set of variables appearing in𝑄(𝑀1), 𝑄(𝑀2) be denoted as 𝑋1 , 𝑋2

First, we show if 𝑥 ∈ 𝑄(𝑀1 ∧𝑀2) then 𝑥(𝑋) ∈ 𝒫(𝑀1 ∧𝑀2). 𝑥 ∈ 𝑄(𝑀1 ∧𝑀2) implies 𝑥(𝑋1) ∈ 𝑄(𝑀1)
and 𝑥(𝑋2) ∈ 𝑄(𝑀2). Since 𝑋 ⊆ 𝑋1 , 𝑋2, hence, 𝑥(𝑋1)(𝑋) = 𝑥(𝑋) ∈ 𝒫(𝑀2) and 𝑥(𝑋) ∈ 𝒫(𝑀2). Hence,
𝑥(𝑋) ∈ 𝒫(𝑀1) ∩ 𝒫(𝑀2) = 𝒫(𝑀1 ∧𝑀2)

Second, we show if 𝑦 ∈ 𝒫(𝑀1 ∧ 𝑀2) then there is an 𝑥 such that 𝑥 ∈ 𝑄(𝑀1 ∧ 𝑀2) and
𝑦 = 𝑥(𝑋). Since 𝑦 ∈ 𝒫(𝑀1 ∧ 𝑀2), hence, 𝑦 ∈ 𝒫(𝑀1),𝒫(𝑀2). So, there exist 𝑥1 , 𝑥2 such that
𝑥1(𝑋) = 𝑥2(𝑋) = 𝑦 and 𝑥1 ∈ 𝑄(𝑀1), 𝑥2 ∈ 𝑄(𝑀2). Now, consider 𝑥 obtained by stacking 𝑥1 , 𝑥2 in
coordinates 𝑋1 , 𝑋2 and taking common coordinates corresponding to 𝑋. For this 𝑥, 𝑥(𝑋) = 𝑦 and
𝑥(𝑋1) ∈ 𝑄(𝑀1), 𝑥(𝑋2) ∈ 𝑄(𝑀2), hence 𝑥 ∈ 𝑄(𝑀1 ∧𝑀2). □

3.2 Extended Formulation of Matroid Union

In this section, we will state the main theorem we want to show, along with a formulation of the
constraints for the matroid union polytope’s extension.

Theorem 3.2 (Extension of Matroid Union). Given matroids 𝑀1 = (𝑆,ℐ1) and 𝑀2 = (𝑆,ℐ2) which have
a compact formulation, their matroid union polytope has a compact formulation.

Let us denote the variables corresponding to elements in ground set of 𝑀1 by 𝑥𝑒 for 𝑒 ∈ 𝑆 and
similarly for 𝑀2 by 𝑧𝑒 for 𝑒 ∈ 𝑆. Let us introduce some new variables 𝑣𝑒 for 𝑒 ∈ 𝑆. Let 𝒫(𝑀1)’s
compact extended formulation be given by 𝑄(𝑀1) and similarly 𝑄(𝑀2) for 𝒫(𝑀2) with variables of
𝑄(𝑀1), 𝑄(𝑀2) being disjoint. Now, consider the polytope 𝑄(𝑀1 ∨𝑀2) given by

𝑣𝑒 ≥ 0 ∀ 𝑒 ∈ 𝑆
𝑣𝑒 ≤ 1 ∀ 𝑒 ∈ 𝑆
𝑄(𝑀1)
𝑄(𝑀2)

𝑣𝑒 ≤ 𝑥𝑒 + 𝑧𝑒 ∀ 𝑒 ∈ 𝑆

Let the polytope corresponding to the union of matroids be denoted by 𝒫(𝑀1 ∨𝑀2) and let this be
over the variables 𝑣𝑒 for 𝑒 ∈ 𝑆. The objective of the rest of the paper is to show that 𝑄(𝑀1 ∨𝑀2) is
indeed an extended formulation of 𝒫(𝑀1 ∨𝑀2).

Lemma 3.3. 𝑄(𝑀1 ∨𝑀2) is an extended formulation of 𝒫(𝑀1 ∨𝑀2).

Let us define a projection map 𝑣(.) which maps 𝑥 to only coordinates corresponding to 𝑣𝑒 for
𝑒 ∈ 𝑆. Define similar maps 𝑥(.), 𝑧(.) for 𝑀1 , 𝑀2.

3.3 Characterization of Extension

In order to show the above theorem, we first start with a claim which is equivalent to theorem 3.2
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Lemma 3.4. Given a set 𝐼 ⊆ 𝑆, 𝐼 is independent in 𝑀1 ∨ 𝑀2 if and only if there is a feasible point
𝑝 ∈ 𝑄(𝑀1 ∨𝑀2) such that 𝑣(𝑝) = 𝜒𝐼 , where 𝜒𝐼 denotes the indicator vector corresponding to 𝐼 in ℝ|𝑆 |.

Proof. For forward direction, let’s take a 𝐼 ⊆ 𝑆 with 𝐼 being independent in 𝑀1 ∨ 𝑀2. 𝐼 will be
formed by union of two independent sets one from 𝑀1 and one from 𝑀2. Let us denote them by 𝐼1
and 𝐼2 respectively. ∃𝑞1 𝑥(𝑞1) = 𝜒𝐼1 and ∃𝑞2 𝑧(𝑞2) = 𝐼2 with 𝑣(𝑝) = 𝜒𝐼 . We will choose 𝑣𝑒 as 0 if 𝑥𝑒 is
zero in 𝑞1 and 𝑧𝑒 is zero in 𝑞2 otherwise we will choose 𝑣𝑒 as 1. This choices of 𝑣𝑒 will satisfy the
inequality 𝑣𝑒 ≤ 𝑥𝑒 + 𝑧𝑒 ∀𝑒 ∈ 𝑆. And since variables of 𝑞1 and 𝑞2 are disjoint , combining 𝑞1 and 𝑞2
along with the given assignment of v’s will form a p such that 𝑝 ∈ 𝑄(𝑀1 ∨𝑀2). □

Proving backward direction of lemma 3.4 will be done in the rest of paper.

Lemma 3.5. Lemma 3.3 and Lemma 3.4 are equivalent.

Proof. Assuming lemma 3.3, we will prove lemma 3.4. Let 𝐼 be independent in 𝑀1 ∨𝑀2. Then,
𝜒𝐼 ∈ 𝒫(𝑀1∨𝑀2). Now, since𝑄(𝑀1∨𝑀2) is an extended formulation, there exists a 𝑝 ∈ 𝑄(𝑀1∨𝑀2)
such that 𝑣(𝑝) = 𝜒𝐼 , showing the forward direction.
Now, to show the reverse direction of 3.4, let there exist a 𝑝 ∈ 𝑄(𝑀1 ∨ 𝑀2) such that 𝑣(𝑝) = 𝜒𝐼 .
Since 𝑄(𝑀1 ∨𝑀2) is an extended formulation, hence, 𝑣(𝑝) = 𝜒𝐼 ∈ 𝒫(𝑀1 ∨𝑀2). Now, 𝒫(𝑀1 ∨𝑀2)
is the convex hull of indicators of independent sets of the matroid union. Any convex combination
of indicators can give a vector with all integer coordinates if and only if the coefficient of convex
combination is 1 for some indicator and zero for all others. Now, since 𝜒𝐼 ∈ 𝒫(𝑀1 ∨𝑀2) is integral
hence, it must be an indicator for an independent set.

Now, we assume lemma 3.4 to show lemma 3.3. First, let 𝑥 ∈ 𝒫(𝑀1 ∨ 𝑀2). Then, 𝑥 is a convex
combination of some indicator vectors corresponding to independent sets. Let these vectors be
𝜒𝐼1 , · · · , 𝜒𝐼𝑘 , where 𝑥 =

∑
𝑖 𝜆𝑖𝜒𝐼𝑖 . Now, by lemma 3.4 there are points 𝑝1 , · · · , 𝑝𝑘 such that 𝑣(𝑝𝑖) = 𝜒𝐼𝑖

and 𝑝𝑖 ∈ 𝑄(𝑀1 ∨𝑀2). Then, let 𝑝 =
∑
𝑖 𝜆𝑖𝑝𝑖 . Since 𝑄(𝑀1 ∨𝑀2) is convex, 𝑝 ∈ 𝑄(𝑀1 ∨𝑀2) and

𝑣(𝑝) = ∑
𝑖 𝜆𝑖𝑣(𝑝𝑖) = 𝑥.

Now, let 𝑝 ∈ 𝑄(𝑀1 ∨𝑀2), we need to show 𝑣(𝑝) ∈ 𝒫(𝑀1 ∨𝑀2). Let the corners of 𝑄′(𝑀1 ∨𝑀2) be
denoted by 𝑝′

𝑖
for 𝑖 ∈ {1 · · ·𝑚}, where 𝑄′(𝑀1 ∨𝑀2) is the projection of 𝑄(𝑀1 ∨𝑀2) in the space

spanned by 𝑥, 𝑧, 𝑣 coordinates. Let 𝑝′ =
∑
𝑖 𝜆𝑖𝑝

′
𝑖
, where

∑
𝑖 𝜆𝑖 = 1 and 𝑝′ is obtained by projecting

𝑝 in the space spanned by 𝑥, 𝑧, 𝑣 coordinates. Then, for all 𝑝′
𝑖
, assume 𝑣(𝑝′

𝑖
) is integral (shown in

lemma 3.6). Now, since 𝑣(𝑝𝑖) is integral, hence, 𝑣(𝑝′
𝑖
) = 𝑣(𝑝𝑖) = 𝜒𝐼𝑖 for some 𝐼𝑖 and 𝑝𝑖 ∈ 𝑄(𝑀1 ∨𝑀2).

Thus, using lemma 3.4, 𝐼𝑖 is independent in 𝑀1 ∨𝑀2 for all 𝑖, hence, 𝜒𝐼𝑖 are corners of 𝒫(𝑀1 ∨𝑀2).
Now, 𝑣(𝑝) = 𝑣(𝑝′) = ∑

𝑖 𝜆𝑖𝑣(𝑝′𝑖) =
∑
𝑖 𝜆𝑖𝜒𝐼𝑖 ∈ 𝒫(𝑀1 ∨𝑀2). □

In the above proof, the only remaining step is to show that corners of 𝑄′(𝑀1 ∨𝑀2) have integral
projections in the 𝑣 coordinates. Instead we show a stronger statement, that is the corners are
integral in all coordinates.

Lemma 3.6. All corners of 𝑄′(𝑀1 ∨𝑀2) are integral.
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Proof. Let 𝑝 be a corner of the polytope. The polytope of 𝑄′(𝑀1 ∨𝑀2) is described by four types of
constraints, ∑

𝑖∈𝑆
𝑥𝑖 ≤ 𝑟1(𝑆)∑

𝑗∈𝑆′
𝑧𝑖 ≤ 𝑟2(𝑆′)

𝑣𝑖 ≤ 𝑥𝑖 + 𝑧𝑖
0 ≤ 𝑣𝑖 ≤ 1

Since 𝑝 is a feasible point in polytope, the rank constraints of both matroids are satisfied. Now
consider the set of tight constraints for both matroids. Using proposition 2.5 we can find a chain
of tight constraints, for both matroids. When these tight constraints are expressed as a system of
linear equations 𝐴𝑥 = 𝑏, all coordinates of 𝑏 being integral. Since 𝑝 is a corner in a polytope with
(𝑥, 𝑧, 𝑣) coordinates, we get 3𝑛 tight constraints where 𝑛 is the size of the ground set of 𝑀1 , 𝑀2. An
example of the matrix 𝐴 is shown in 9

𝐴 =



1 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 1 0 0 0
1 0 0 1 0 0 −1 0 0
0 1 0 0 1 0 0 −1 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


(9)

Since the tight constraints form a chain in both matroids, we can partition the constraints using
gaussian elimination keeping the coordinates of 𝑏 integral. In the example, this will result in a new
matrix as shown in 10

𝐴′ =



1 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 0 0 1 0 0 0
1 0 0 1 0 0 −1 0 0
0 1 0 0 1 0 0 −1 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


(10)

Further, in the columns corresponding to 𝑣 coordinates, if both 𝑣𝑖 ≤ 𝑥𝑖 + 𝑧𝑖 and 0 ≤ 𝑣1 (corresp.
𝑣1 ≤ 1) are tight, the row with 𝑣𝑖 having coordinate 1 can be added to the row with coordinate −1.
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This operation in the example results in the matrix 11

𝐴′′ =



1 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 0 0 1 0 0 0
1 0 0 1 0 0 0 0 0
0 1 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


(11)

Now, it is enough to show that the determinant of 𝐴′′ is either 1,−1 or 0. Since 𝑝 is a corner, the
possibility of the determinant being 0 will be ruled out proving the claim.
Now, every column of 𝑣 coordinates has atmost one 1 and all other rows contain zeros. Hence,
expanding the determinant along these columns gives us the determinant of the submatrix with
𝑥, 𝑧 coordinates in columns upto a sign. In the example the resulting matrix is given by 12

𝐴′′′ =



1 0 0 0 0 0
0 1 1 0 0 0
0 0 0 1 1 0
0 0 0 0 0 1
1 0 0 1 0 0
0 1 0 0 1 0


(12)

The resultant matrix has atmost two 1 entries per column, with number of rows and columns being
equal. Hence, one of two things must be true by a simple averaging arguement

1. The matrix has exactly two ones in each row

2. The matrix has atmost one 1 in some row

In the second case we can expand the determinant of the matrix along the corresponding row if it
contains a 1, and if not, the determinant is 0. Hence, eventually we either end up with a matrix
corresponding to the first case or these inductive steps give an empty matrix in which case the
determinant is +1 or −1. Hence, all that remains is to handle case 1.
In this case, since the matrix has exactly two ones in each row, it must have exactly two ones in each
column. We know that the constraints corresponding to the rank constraints of the matroids when
partitioned provide a single one per column. Hence, the other ones must arise from the other types
of constraints. Let the rank constraints correspond to rows in the set 𝑆1 and the other be from the
set 𝑆2. Then, the row operation 𝑅1 → ∑

𝑖∈𝑆1 𝑅𝑖 −
∑
𝑗∈𝑆2 𝑅 𝑗 yields zeros in the first row, showing that

the determinant is 0. □
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3.4 Extension of Partition Matroids

We first show extension complexity for partition matroid because of the simplicity of its polytope’s
characterization. Major task is to prove given 𝑝 ∈ 𝑄(𝑀1 ∪ 𝑀2) with 𝑣𝑒 integral, 𝑥𝑒 and 𝑧𝑒 non-
integral, we can construct a 𝑝′ ∈ 𝑄(𝑀1 ∪𝑀2) such that 𝑣(𝑝) = 𝑣(𝑝′) and 𝑥(𝑝′) and 𝑧(𝑝′) are integral,
hence proving backward direction of Lemma 3.4.

3.4.1 Construction of network flow

We will construct a network flow problem with suitable weights, such that if there exist 𝑝 ∈
𝑄(𝑀1 ∪𝑀2) with 𝑣(𝑝) = 𝑉 , then our network’s max integral flow will give us 𝑝′ with 𝑣(𝑝′) = 𝑉 .

We will have 5 different layers in our network graph. First layer will have a single source node.
Second layer will have nodes corresponding to 1 entries in V i.e, {∀𝑒 | 𝑣𝑒 = 1 } we will have a single
node in the second layer. We will add edges between first and second layer of capacity 1 for all node
pairs. Third layer will have nodes for 𝑥𝑒 and 𝑧𝑒 corresponding to 1 entries in V i.e, {∀𝑒 | 𝑣𝑒 = 1}.
We will add edges of capacity 1 between second and third layer for nodes corresponding to same e.
Fourth layer will have nodes corresponding to partitions in 𝑀1 and 𝑀2. 𝑥𝑒 and 𝑧𝑒 will be connected
to their respective partition in which they are from third layer to fourth layer. Fifth layer just
contains a single sink node. All the partition node will have a edge to sink with edge capacity equal
to rank of partition.
For example, figure 1 shows the construction for network flow for two partition matroids 𝑀1 and
𝑀2. 𝑀1’s partition is {𝑆1 , 𝑆2} with 𝑆1 = {1} and rank 1, 𝑆2 = {2, 3} and rank 1. 𝑀2’s partition is
{𝑆3} with 𝑆3 = {1, 2, 3} and rank 1, where 𝑣1 = 𝑣2 = 𝑣3 = 1. Here, all edge capacities are hence, also
equal to 1. Now, let’s state the claim.

𝑠

𝑣1

𝑡
𝑣2

𝑣3

𝑥1

𝑥2
𝑥3

𝑧1
𝑧2
𝑧3

𝑆1

𝑆2

𝑃1

𝑟(𝑆1)

𝑟(𝑆2)

𝑟(𝑃1)

Figure 1: Example of a network flow obtained from a partition matroid

Lemma 3.7. If there exists a 𝑝 ∈ 𝑄(𝑀1 ∨𝑀2) with 𝑣(𝑝) = 𝜒𝐼 for some 𝐼 ⊆ 𝑆, then 𝐼 is independent in
𝑀1 ∨𝑀2 given both 𝑀1 , 𝑀2 are partition matroids.

Proof. Now, using the above construction for the given 𝑣, and partition matroids 𝑀1 , 𝑀2, we get a
network flow. Now, corresponding to a flow, we get a solution for 𝑝′ ∈ 𝑄′(𝑀1 ∨𝑀2) as, 𝑣𝑒 = 1 for
all 𝑒, 𝑥𝑒 , 𝑧𝑒 are the values of incoming flow, and they must satisfy rank constraints by construction.
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Now, the value of the flow, is equal to the max-flow. Hence, by ford-fulkerson algorithm, there
must exist an integral max-flow. Thus, we get an integral solution for 𝑥, 𝑧, 𝑣. Now, as 𝑣𝑖 ≤ 𝑥𝑖 + 𝑧𝑖 ,
hence for all 𝑖 ∈ 𝐼, 𝑖 ∈ 𝐼1 or 𝑖 ∈ 𝐼2, where 𝐼1 , 𝐼2 are indicators of 𝑥, 𝑧 respectively. Hence, there exist
𝐼1 , 𝐼2 such that 𝐼 ⊆ 𝐼1 ∪ 𝐼2. Since, 𝐼1 ∪ 𝐼2 is independent in 𝑀1 ∨𝑀2, so is 𝐼. □

Observe that lemma 3.7 is the same as backward direction of lemma 3.4 for partition matroids.
Hence, we get an important result.

Theorem 3.8. If𝑀1 = (𝑆, 𝐼1), 𝑀2 = (𝑆, 𝐼2) are partition matroids with compact formulations, then𝑀1∨𝑀2
also has a compact formulation

Proof. Application of lemmas 3.7, 3.4 and 3.5 shows that 𝑄(𝑀1 ∨ 𝑀2) is indeed an extended
formulation of 𝒫(𝑀1 ∨𝑀2) and 𝑄(𝑀1 ∨𝑀2) is polynomial in |𝑆 |, hence, showing the result. □

3.5 Extension for General Matroids

Now that we have shown lemma 3.4 for partition matroids, we will use the techniques in its proof
such as network flow in order to show lemma 3.4 for general matroids. Recall that the forward
direction of the lemma has already been shown. For proving the backward direction, we will rely
on two key lemmas. The first to obtain an integral feasible point in the proposed polytope given a
feasible point, and the second showing that finding such an integral point shows that the given set
is indeed an independent set in the matroid union.

3.5.1 Getting independent sets from an integral solution

To show that the given set is an independent set in the matroid union (given we have an integral
feasible solution) we show the lemma,

Lemma 3.9. If∃𝑝 such that 𝑝 ∈ 𝑄(𝑀1∨𝑀2), 𝑥(𝑝) and 𝑧(𝑝) are integral and 𝑣(𝑝) = 𝜒𝐼 then 𝐼 ∈ ℐ(𝑀1∨𝑀2).

Proof. Choose 𝐼1 as indicator vector of 𝑥(𝑝) i.e, 𝑥(𝑝) = 𝜒𝐼1 and 𝐼2 as indicator vector of 𝑧(𝑝) i.e,
𝑧(𝑝) = 𝜒𝐼2 . 𝑝 satisfies 𝑄(𝑀1) implies 𝐼1 ∈ ℐ(𝑀1) and similarly 𝐼2 ∈ ℐ(𝑀2). 𝑝 ∈ 𝑄(𝑀1 ∨𝑀2) implies
𝑣𝑒 ≤ 𝑥𝑒+𝑧𝑒∀𝑒. This will imply either 𝑥𝑒 = 1 or 𝑧𝑒 = 1 if 𝑣𝑒 = 1 since 𝑥𝑒 , 𝑧𝑒 and 𝑣𝑒 all are integral. This
implies 𝐼 ⊆ 𝐼1 ∨ 𝐼2 and since every subset of independent set is independent, 𝐼 ∈ ℐ(𝑀1 ∨𝑀2). □

3.5.2 Getting integral solution from a feasible solution

Here, we show how to obtain an integral solution from a feasible solution of the polytope𝑄(𝑀1∨𝑀2).
Coupling this with lemma 3.9, will finish the backward direction of lemma 3.4.

Lemma 3.10. Given 𝐼 ⊆ 𝑆, 𝑝 ∈ 𝑄(𝑀1 ∨𝑀2) such that 𝑣(𝑝) = 𝜒𝐼 , then there exists 𝑝′ ∈ 𝑄(𝑀1 ∨𝑀2) such
that 𝑥(𝑝′), 𝑧(𝑝′) are integral and 𝑣(𝑝) = 𝑣(𝑝′) = 𝜒𝐼 .

Proof. Given solution 𝑝 ∈ 𝑄(𝑀1 ∨ 𝑀2) i.e, 𝑥(𝑝) ∈ 𝒫(𝑀1) and 𝑧(𝑝) ∈ 𝒫(𝑀2), we will show
construction of 𝑝′ ∈ 𝑄(𝑀1 ∨𝑀2) such that 𝑥(𝑝′), 𝑧(𝑝′) are integral and 𝑣(𝑝) = 𝑣(𝑝′) = 𝜒𝐼 . Let us
denote 𝑥(𝑝′) and 𝑧(𝑝′) by 𝑥′ and 𝑧′ respectively. Initially, choose 𝑥′ and 𝑧′ as 𝑥(𝑝) and 𝑧(𝑝) respectively.
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Modify 𝑥′𝑒 and 𝑧′𝑒 as zero if 𝑣(𝑝)𝑒 = 0. If 𝑣(𝑝)𝑒 = 1, then modify 𝑥𝑒 and 𝑧𝑒 such that 𝑥′𝑒 + 𝑧′𝑒 = 1 by
reducing 𝑥𝑒 or 𝑧𝑒 . All constraints in 𝒫(𝑀1) and 𝒫(𝑀2) are of the form

∑
𝑒 𝑥𝑒 ≤ 𝑐 and

∑
𝑒 𝑧𝑒 ≤ 𝑐 by

Edmond’s characterization. This implies 𝑥′ ∈ 𝒫(𝑀1) since we are only reducing values of 𝑥′𝑒 in the
above modification. Therefore, ∃𝑝′1 ∈ 𝑄(𝑀1) such that 𝑥(𝑝′1) = 𝑥′. Similarly, ∃𝑝′2 ∈ 𝑄(𝑀2) such that
𝑧(𝑝′2) = 𝑧′. Hence, ∃ a point 𝑝′ ∈ 𝑄(𝑀1 ∨𝑀2) with 𝑥(𝑝′) = 𝑥′ and 𝑧(𝑝′) = 𝑧′. Then using 2.5 we
can find a chain of inclusion wise maximal constraints for the tight sets corresponding to 𝑥(𝑝′) in
𝒫(𝑀1), and a similar chain corresponding to 𝑧(𝑝′). Let’s denote these chains by 𝒞1 = {𝐶1

𝑖
: 𝑖 ≥ 1}

and 𝒞2 = {𝐶2
𝑗

: 𝑗 ≥ 1}. Now, the tight constraint corresponding to a chain can be given as,∑
𝑒∈𝐶1

𝑖

𝑥𝑒 = 𝑟𝑎𝑛𝑘(𝐶1
𝑖 )

Hence, this can be converted into a series of equalities obtained as,∑
𝑒∈𝐶1

𝑖
−𝐶1

𝑖−1

𝑥𝑒 = 𝑟𝑎𝑛𝑘(𝐶1
𝑖 ) − 𝑟𝑎𝑛𝑘(𝐶

1
𝑖−1)

Similar constraints can be defined for 𝒞2. Let the above system of equalities be denoted as 𝒞′. Now,
this can be used to construct network flow similar to the construction used for the partition matroid.
Augment flow by 𝜀 such that some slack constraints becomes tight in 𝒫(𝑀1) or 𝒫(𝑀2) or some 𝑥𝑒
or 𝑧𝑒 becomes integral (this can be done using lemma 3.11). Repeating the above process until all 𝑥𝑖
and 𝑧𝑖 become integral completes the proof. □

Lemma 3.11. For a given network flow diagram of 𝒞′, you will always be able to augment the flow by 𝜀 such
that either some slack constraints became tight in 𝑃(𝑀1) or 𝑃(𝑀1) or some 𝑥𝑒 or 𝑧𝑒 becomes integral and
tight constraints will remain tight.

Proof. Consider a augmenting cycle in the network flow diagram which containing non-integral
edges. If such a cycle doesn’t exist then all 𝑥𝑒 and 𝑧𝑒 are already integral. There will exist a
minimum 𝜀 which on augmenting to this cycle causes some non integral edges to become integral,
let’s denote this by 𝛼. There will exist a minimum 𝜀 which on augmenting to this path causes some
slack constraint to become tight, let’s denote it by 𝛽. Hence min(𝛼, 𝛽) is the required 𝜀 such that
some slack constraints became tight in 𝒫(𝑀1) or 𝒫(𝑀2) or some 𝑥𝑒 or 𝑧𝑒 becomes integral. Note
that tight constraints will remain tight during augmentation. This is because max flow implies
that capacity constraints are tight for each partition. Since each element of the chain is a linear
combination of elements of the partition, tightness of chain constraints is preserved. Moreover, any
other tight constraint is a linear combination of the tight constraints in the chain, hence all tight
constraints are preserved. □

3.5.3 Example of the integral point algorithm

The algorithm used in the proof of lemma 3.10 is iterative in nature, and uses the chaining of tight
constraints heavily in order to construct a flow network. In this section, we will run this algorithm
on the union of a 1-uniform and a 2-uniform matroid both of which have 3 elements in their ground
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set.
Consider the matroids𝑀1 = (𝑆, 𝐼1), 𝑀2 = (𝑆, 𝐼2)with 𝑆 = {1, 2, 3}. Consider 𝐼 ⊆ 𝑆 as 𝐼 = {1, 2, 3}.Let
feasible point 𝑝 ∈ 𝑄(𝑀1 ∨𝑀2) be such that 𝑥(𝑝) = (1

4 ,
1
2 ,

1
4 ) and 𝑧(𝑝) = (3

4 ,
1
2 ,

3
4 ). Then, we have the

tight constraints,

𝑥1 + 𝑥2 + 𝑥3 ≤ 1
𝑧1 + 𝑧2 + 𝑧3 ≤ 1

So, we get the flow network 2. We see that in order to augment the flow, while respecting rank

𝑠

𝑣1

𝑡
𝑣2

𝑣3

𝑥1

𝑥2

𝑥3

𝑧1

𝑧2

𝑧3

𝑃1

𝑆1

2

0.5 − 𝜀

0.25 + 𝜀

0.5 + 𝜀
0.75 − 𝜀

Figure 2: First iteration of algorithm

constraints, we can set 𝜀 = 0.5 to get 𝑥 = (0.75, 0, 0.25) and 𝑧 = (0.25, 1, 0.75). Hence, we get the
new tight constraints as,

𝑥1 + 𝑥3 ≤ 1
𝑥1 + 𝑥2 + 𝑥3 ≤ 1
𝑧1 + 𝑧2 + 𝑧3 ≤ 2

Hence, paritioning gives us 𝑥1 + 𝑥3 = 1, 𝑥2 = 0 as equalities in the flow network, corresponding to 3
Here, choosing 𝜀 = 0.25 does the trick, giving us the required integral solutions as 𝑥 = (1, 0, 0) and
𝑧 = (0, 1, 1). Observe that the union of the sets corresponding to these indicators indeed gives us 𝐼.

3.5.4 Finishing the proof

Now that we have shown lemmas 3.9, 3.10 we can show our main result.

Lemma 3.4. Given a set 𝐼 ⊆ 𝑆, 𝐼 is independent in 𝑀1 ∨ 𝑀2 if and only if there is a feasible point
𝑝 ∈ 𝑄(𝑀1 ∨𝑀2) such that 𝑣(𝑝) = 𝜒𝐼 , where 𝜒𝐼 denotes the indicator vector corresponding to 𝐼 in ℝ|𝑆 |.
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𝑠

𝑣1

𝑡
𝑣2

𝑣3

𝑥1

𝑥2

𝑥3

𝑧1

𝑧2

𝑧3

𝑃1 2

0.25 − 𝜀

0.75 + 𝜀

0.75 + 𝜀

0.25 − 𝜀

0

Figure 3: Second iteration of algorithm

Proof. The forward direction has already been shown.
For the backward direction, let 𝑝 ∈ 𝑄(𝑀1 ∨𝑀2) such that 𝑣(𝑝) = 𝜒𝐼 . Then, from lemma 3.10, we
have that there exists a point 𝑝′ ∈ 𝑄(𝑀1 ∨𝑀2) such that 𝑥(𝑝′), 𝑧(𝑝′) are integral with 𝑣(𝑝′) = 𝜒𝐼 .
Now, using lemma 3.9 we have that 𝐼 ∈ ℐ(𝑀1 ∨𝑀2). □

Now that we have shown the critical lemma of this paper, we can use another lemma obtained
earlier to show our proposed result.

Lemma 3.3. 𝑄(𝑀1 ∨𝑀2) is an extended formulation of 𝒫(𝑀1 ∨𝑀2).

Proof. Since lemma 3.5 holds, and lemma 3.4 has been showed, the proof follows. □

4 Discussion

Once we have the result that matroid union of matroids with compact formulations has a small
extension complexity, it is tempting to use this result as a generator to get small extension for all
matroids. But, union does not act as a generator for matroids, so such an approach can work for
some matroids. After a brief review of the known extension complexities, we do not observe any
novelties that can be derived from this result so far.

In the direction of finding small extension complexities for independent set polytopes, one
of the major open questions is finding a small extension for linear matroids. We are also interested
in conjectures given by Tony Huynh [Huy16] in his blog post. Both these open questions can serve
as directions for future work.
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