Random Walks and forbidden minors I

Ameya Singh, Krishna Agaram & Soham Joshi

Prof. Akash Kumar

Autumn 2023

Ameya, Krishna & Soham (IITB)

is and forbidden minors l

Theorem

If G is ϵ -far from being H-minor-free, then there exists an algorithm finds an H-minor of G with probability at least 2/3. Furthermore, the algorithm has a running time of $dn^{1/2+O(\delta r^2)} + d\epsilon^{-2\exp(2/\delta)/\delta}$ The main procedure of the paper FindMinor(G, ϵ, H) tries to find an H-minor in G.

- LocalSearch(s) : This procedure performs a small number of short random walks to find pieces of small conductance
- Solution FindPath(u, v, k, i): This procedure tries to find a path from u to v.
 - i : length of walk
 - 2 k : number of walks from u to v
- SindBiClique(s) : Attempts to find sufficiently large biclique minor. It
 - Generates seed sets A, B using random walks from s.
 - **2** Calls FindPath on all pairs in $A \times B$.

2023

- $\textcircled{O} \quad \delta : \text{ An arbitrary small constant}$
- 2 r : The number of vertices in H
- ℓ : The random walk length. Set as $n^{5\delta}$
- $\epsilon_{\text{CUTOFF}} = n^{\frac{-\delta}{\exp(2/\delta)}}$
- KKR(F, H) : Exact H-minor finding procedure by Kawarabayashi, Kobayashi and Reed. Running time = O(V²)

FindMinor (G, ε, H) 1. If $\varepsilon < \varepsilon_{\text{CUTOFF}}$, query all of G, and output KKR(G, H)2. Else (a) Repeat $\varepsilon^{-2} n^{35\delta r^2}$ times: i. Pick u.a.r. $s \in V$ ii. Call LocalSearch(s) and FindBiclique(s). LocalSearch(s)1. Initialize set $B = \emptyset$. 2. For $h = 1, ..., n^{7\delta r^2}$: (a) Perform $\varepsilon^{-1} n^{30\delta r^2}$ independent random walks of length h from s. Add all destination vertices to B. 3. Determine G[B], the subgraph induced by B. 4. Run KKR(G[B], H). If it returns an H-minor, output that and terminate.

FindBiclique(s)
1. For i = 5r²,..., 1/δ + 4:

(a) Perform 2r independent random walks of length 2ⁱ⁺¹ℓ from s. Let the destinations of the first r walks be multiset A, and let the destinations of the remaining walks be B.
(b) For each a ∈ A, b ∈ B:

i. Run FindPath(a, b, n^{δ(i+18)/2}, i).

(c) If all calls to FindPath return a path, then let the collection of paths be the subgraph F. Run KKR(F, H). If it returns an H-minor, output that and terminate.

FindPath(u, v, k, i)

Perform k random walks of length 2ⁱℓ from u and v.

2. If walks from u and v terminate at the same vertex, return these paths. (Otherwise, return nothing.)

7/14

• < = • < = •

Definition

For any set of vertices R, $s \in R$, $u \in R$, and $i \in \mathbb{N}$, we define the R-returning probability as follows. We denote by $q_{[R],s}^{(i)}(u)$ the probability that a $2^i \ell$ -length random walk from s ends at u, and encounters a vertex in R at every $j\ell$ th step for all $1 \leq j \leq 2^i$. The R-returning probability vector, denoted by $q_{[R],s}^{(i)}$ is the |R| -dimensional vector of returning probabilities.

8/14

2023

Some more lemmas

Lemma

$$q_{[R],s}^{(i+1)}(u) = q_{[R],s}^{(i)}.q_{[R],u}^{(i)}$$

This follows from symmetry of the random walk matrix.

Lemma

$$q^{(i)}_{[R],s} = (\mathbb{P}^R_R M^\ell \mathbb{P}_R)^{2^i} \mathbb{1}_s$$

This is because the matrix P_R filters R from V(G).

Lemma

$$|R|^{-1} \sum_{s \in R} \|q_{[R],s}^{(i)}\|_1 \ge (|R|/n)^{2^i}$$

Proof.

The case i = 0 follows from Cauchy-Schwarz. The general case then follows by the power-mean inequality.

Ameya, Krishna & Soham (IITB)

9/14

Stratification results in a collection of disjoint sets of vertices denoted by S_0, S_1, \cdots which are called strata. The corresponding residue sets are denoted by R_0, R_1, \cdots . The zeroth residue R_0 is initialized before stratification, and subsequent residues are defined by the recurrence $R_i = R_0 \setminus \bigcup_{j < i} S_j$.

Definition

Suppose R_i has been constructed. A vertex $s \in R_i$ is placed in S_i if $\|q_{[R],s}^{(i)}\|_2^2 \ge 1/n^{\delta i}$

Claim

For all
$$s \in R_i$$
 and $1 \le j \le i$, $\left\| q_{[R_i],s}^{(j)} \right\|_2^2 \le \frac{1}{n^{\delta(j-1)}}$.

If not (for some j), $\left\|q_{[R_{j-1}],s}^{(j)}\right\|_2^2 \ge \left\|q_{[R_i],s}^{(j)}\right\|_2^2 > \frac{1}{n^{\delta(j-1)}}$, implying $s \in S_{j-1}$ (and so $s \notin R_i$, contradiction).

CLaim

For each
$$s \in R_i$$
 and $2 \le j \le i+1$, $\left\|q_{[R_i],s}^{(j)}\right\|_{\infty} \le \frac{1}{n^{\delta(j-2)}}$.

This follows from
$$q_{[R_i],s}^{(j+1)} = q_{[R_i],s}^{(j)} \cdot q_{[R_i],s}^{(j)}$$
 and Cauchy-Schwarz.

Claim

For all
$$s \in S_i$$
, $\left\|q_{[R_i],s}^{(i+1)}\right\|_1 \geq \frac{1}{n^{\delta}}$.

Proof

The key point is using Hölder to conclude $\left\|q_{[R_i],s}^{(i+1)}\right\|_2^2 \leq \left\|q_{[R_i],s}^{(i+1)}\right\|_1 \left\|q_{[R_i],s}^{(i+1)}\right\|_{\infty}.$ Using the above bounds on the two other terms yields the result.

(日)

Lemma

Suppose $\epsilon > \epsilon_{\text{CUTOFF}}$. At most $\epsilon n / \log(n)$ vertices are in $R_{1/\delta+3}$

Ameya, Krishna & Soham (IITB)

ks and torbidden minors I

э

• • = • • = •

Lemma

Fix $s \in R_i$. Then the following holds:

$$\mathbb{E}_{u_1, u_2 \in \mathcal{D}_{s,i} \times \mathcal{D}_{s,i}} \left[q_{[R_i], u_1}^{(i)} \cdot q_{[R_i], u_2}^{(i)} \right] \geq \frac{1}{\left\| q_{[R_i], s}^{(i+1)} \right\|_1^2} \frac{\left\| q_{[R_i], s}^{(i+1)} \right\|_2^4}{\left\| q_{[R_i], s}^{(i)} \right\|_2^2}$$

Proof

Extremely clever manipulation and Cauchy-Schwarz.

.

э

14/14