Computational Complexity

Scribe (5%)

Midsem (20%)

Endsem (35%)

30/7/24

Ref: course webpage

2 or 3 Assignments (20%) Pre-req : Basic Algorithm Design, * Basic Linear Algebra, Presentations (20%) Basic Graph Theory, NP, NP-C, Turing Machines

Can we show that 3-coloring problem requires atleast IL (2")? (1 million dollars (C: Prollob Naive : Try all colors -> 3" time

<u>Resources</u> : Memory (Working Memory) Input is in separate Given a graph n vertices, 2 vertices u, v whether $u \sim v$ momony [RAM too small for graph size] BFS : 1 (n) memory (maintain a queue of vertices) Ly too much if graph is big n vertices \implies log n bits to store index of vertex. 2005 Ambitious gozl: O(log n) bits of memory randomization, Reingeld

dot using random walk O(n3) time with high probability algo. -> 1 with n 1

Resource : Randomness

Grading :

Expensive resource : seed (systime / sound) -> looks random. Not predictable => random [view of complexity theory]

Resource : Communication

NP-C

Ρ

Computation blu many parties [distributed computing]. Want to limit comm. (local computation is cheap)

PSPACE

<u>Course</u> : Connections between different concepts of complexity Connect problems that are hard, hardness assumptions.

> Proving pseudo randomness = Proving ckt lower bounds Hard to compute f" --> generate pseudo-random Make algos deterministic.

Does use of randomness give you more power? [Deen her 30 years]
E.g. Using random
$$O(\log n)$$
 bits memory w.h.p. will there and algo more
without random show > log n
> Bedict: Equal power
Interactive Proofs, Zero-knowledge, Prob. Checkable PP
Graph: Is there a path from u to v of length ≤ 100
Yes \rightarrow give path
No \rightarrow give path
No \rightarrow give coloring science (easy proof)
No \rightarrow Magbe some way? (e.g. existence of 4-clique)
If a logical statement is true, then there is always a small proof? (Open)
NP
 $O = NP$ (bdief, Co-NP \neq NP)
Allowing interaction makes it possible ! ($Q = f(hec)$: Proof with p.)
 I (sty # rounds, prover unlimited power.
3-coloring has unlimited power. (905)
Plockchains: (certain nodes compute, convince other parties of that computation,
pointeraction, is weld kere.

Probabilistic Checkable \iff Hardness of Proofs Approximation

Zero-Knowledge Proofs

[Goldwasser]

Want to convince I know, without giving away information

Basic hower Bound on Sorting 2/8 <u>Claim</u> : Sorting n numbers requires I (n log n) comparisons Adversarial argument : n! = A: > A; A; A; [First query A: > A;] Initially Adversary picks answer with bigger set from the two. (atleast half of initial size) n! ____ n!/2 ___ n!/4 & log[n!) queries needed to obtain permutation ⇒ needed for sorting = _D Caloga) Above is an information theoretic lower bound \Rightarrow Need x queries to obtain enough info · Complexity Lower Bound : Given all into, how much computation needed to get answer · Can you write a program for any given problem ? - Lack of understanding information - Lack of computational power Puzzle: n numbers, exactly two of them are equal

Goal: Find the pair that is equal

Queries A;, A; -> {<, >, = }

Computational Task :

Input e 80,14* Output e 80,14*

- 1. Search Problem : $R \subseteq \{o_1, v_1\}^* \times \{o_1, v_2\}^*$ (or) $f : \{o_1, v_2\}^* \longrightarrow (2^{\{o_1, v_2\}^*} - \neq)$
- 2. Decision Problem : f: {o11} * -> {o11}

For every search problem there is a natural decision problem 3.7. solving the latter solves the former and vice versa [e.q. in poly time]

Diagonalisation
Well defined fⁿ: 1. G: input natural no. i
oudput =
$$\int 1$$
, if ith program on input i halts
Consider program P \rightarrow input i Enl
run program G on input i
If output is $1 \rightarrow loop$
O \rightarrow return O

Let j = index of program ? If G(g) = 1 : Program P halts on input j j contradiction but P loops = 0 : Program P doesn't halt on j j contradiction. but P returns 0 => G doesn't have a program. H: input v, x 1 output 1 :f ith program halts on input x Halting 0 otherwise problem

<u>HW Problem</u>: Given two C++ programs, do they have same behaviour? [Show undecidable]

Input: description of TM and an input x for it Output: whether it stops in 2^{121} time

 Input: A bookean ckt with 21 variables. (Defines a graph on 2^l vertices) output: whether s ~t in this graph Trivial algo: 2^l = 0(? size of formula) EXP-time needed in this. NP 10/8 Decision Problem Q Search Problem P The two are equivalent if P has a polytime algo iff & has a polytime algo. Det: LENP if ZTM M which runs in polytime and Z polynomial q 1.7. $\forall x \in L \quad \exists c \in \{0, 1\}^*, \quad |c| \leq q(n) \quad s.t \cdot M(x, c) = 1$ $\forall x \notin L \forall c \in \{0, 1\}^*, M(x, c) = 0$ E.g. (Independent Set) Input: Graph G, number k Problem: G has an independent set of size k ? Certificate : set of vertices of size k which forms an independent set $M \rightarrow verifies$ if c is valid indep-set in G with size k e.g. # SAT = $\{ < \emptyset, k > : no. of satisfying assignments of <math>\emptyset > k \}$ 1 191 + log k certificate < KIØ] size Not sure if in NP E.g. MCSP = $\{\forall \phi, \kappa \}$: there is a equivalent boolean circuit \forall with $\}$ (min . circuit size atmost k size problem)

Not sure if in NP, since verifying if & equivalent &' is not known to be in P

Indset = $\{ \langle G, K \rangle : Graph & Goesn't have an ind. set of size k ~ r$ Not sure if in NP $<math>L \in P \iff \overline{L} \in P$ $L \in NP \iff \overline{L} \in NP$ $P \subseteq NP$, Certificate : E, TM runs the algo itself <u>Det</u> (Co-NP) : We say $L \in Co-NP$ if $\overline{L} \in NP$ PRIMES eP : $\{ \langle n \rangle : n \}$ is prime ~

Easy to see : PRIMES & CO-NP -> certificate · a, b, n = ab Known to be in P before 2002

$$GI = \{ \langle G, H \rangle : G \notin H \text{ are isomorphic } \}$$

$$\overline{GI} \implies \text{verification using randomisation}$$

$$GI \in \mathfrak{Guasi} \ P \ (n \log^6 n)$$

$$System of linear equations : Solvable / Not Solvable$$

$$SLE \in NP$$

$$Solution \quad size is poly (input)$$

$$SLE \in co-NP \ [Give linear combination which adds up to 0]$$

$$\frac{P}{P^{1}} (Primes \in NP):$$

$$A number p is prime iff there is a number \neq s.t.$$

$$z^{P^{-1}} = 1 \mod p$$

and for any $\tau , <math>\mp^{\tau} \neq 1 \mod p$

A number p is prime iff there is a number
$$\neq$$
 s.t.
 $z^{p-1} \equiv \pm \mod p$
and for any $\tau < p-1$, $z^{\tau} \not\equiv \pm \mod p$
Pf:
If q is a prime, $\forall 2$, $z^{2-1} \equiv \pm \mod q$, $q/2$
 z, z^2, \ldots, z^{q-1} y repeats at some point.
Obs: $z \ge z \ge 0, 1, \ldots, q-1$ y = $\{0, 1, \ldots, q-1\}$
if $2 \ge a_1 - a_2$. (contr.)

$$2x0=0.$$
 So
 $(2x1, 3x2, ..., 3xq-1) = (1, ..., 1q-1)$
 $2^{q-1} \times (x ... \times q - 1) = (x ..., xq-1)$
 $2^{q-1} = 1.$

If p is not a prime, no such certificate. (trick: chinese remaindering)

$$\begin{pmatrix} g^{g-1} \end{pmatrix} \stackrel{g^{-1}}{\equiv} 1 \mod 3 \implies g^8 \equiv 1 \mod 3, \ 1 \mod 5$$

$$(2^{g-1})^{g-1} 1 \mod 5 \implies g^8 \equiv 1 \mod 15$$

$$\implies 2^8 \equiv 1 \mod 15$$

$$3 \mid 2^8 - 1 \implies 15 \mid 2^8 - 1$$

$$5 \mid 2^8 - 1$$

Order
$$p(z) \equiv \min$$
 power of z which is $1 \mod p$
Need to show \exists_z order $p(z) = p - 1$.

Among all elements if maximum order is r then
$$\forall \neq , \neq r = 1$$
.
the a field. $\pm r = 0$. degree $\neq poly$, atmost $\neq roots$.
 \neq dements $\Rightarrow r = q - 1$.
Verifying A number p is prime iff there is a number \neq s.t. is not simple.
 $\pm^{r-1} = 1 \mod p$
and for any $\tau , $\pm^r \neq 1 \mod p$
 q
 q dements q $\tau , $\pm^r \neq 1 \mod p$
 q
 q dements q $\tau , $\pm^r \neq 1 \mod p$
 q
 q dements q $\tau , $\pm^r \neq 1 \mod p$
 q
 q dements q $\tau , $\pm^r \neq 1 \mod p$
 q
 q dements q $\tau , $\pm^r \neq 1 \mod p$
 q
 q dements q $\tau , $\pm^r \neq 1 \mod p$
 q
 q dements q $\tau , $\pm^r \neq 1 \mod p$
 q
 q dements q $\tau , $\pm^r \neq 1 \mod p$
 q
 q dements q $\tau , $\pm^r \neq 1 \mod p$
 q dements q q
 q dements q q
 q q q
 q dements q
 q dements q
 q q q
 q dements q dements q
 q dements q dements q
 q dements q
 q dements q dements q
 q dements q dements q
 q dements q dements$$$$$$$$$$

$$\begin{array}{c} \underline{\operatorname{Im}} : (\operatorname{coch} \operatorname{Levin}) \text{ SAT is } \operatorname{NP} \operatorname{-complete} & \operatorname{If} \mathcal{B} \\ & \left(\operatorname{Kop} \operatorname{R72} - 2i \operatorname{Froklems}\right) \\ & \operatorname{NP-omple} \left\{ \begin{array}{c} \mathcal{S} \\ \mathcal{K} \end{array} & \in \operatorname{reduction, transitive} \\ & \operatorname{relation} \end{array} \right. \\ & \operatorname{RP} \operatorname{rel} \left\{ \begin{array}{c} \mathcal{S} \\ \mathcal{K} \end{array} & \in \operatorname{reduction, transitive} \\ & \operatorname{relation} \end{array} \right. \\ & \operatorname{RP} \operatorname{rel} \left\{ \begin{array}{c} \mathcal{O} \\ \mathcal{S} \end{array} \right\} \xrightarrow{\operatorname{RP}} \operatorname{SAT} \operatorname{Assignment} is \operatorname{cothicte} \\ & \begin{array}{c} \mathcal{O} \\ \mathcal{O} \\ \mathcal{O} \\ \mathcal{O} \\ \mathcal{A} \end{array} \right. \begin{array}{c} \mathcal{A} \end{array} \\ & \begin{array}{c} \mathcal{O} \\ \mathcal{O} \\ \mathcal{A} \end{array} \xrightarrow{\operatorname{RP}} \operatorname{rel} \end{array} \xrightarrow{\operatorname{RP}} \operatorname{Assignment} is \operatorname{cothicte} \\ & \begin{array}{c} \mathcal{O} \\ \mathcal{O} \\ \mathcal{O} \\ \mathcal{O} \end{array} \\ & \begin{array}{c} \mathcal{A} \end{array} \\ & \begin{array}{c} \mathcal{O} \\ \mathcal{O} \end{array} \xrightarrow{\operatorname{RP}} \operatorname{rel} \end{array} \xrightarrow{\operatorname{RP}} \operatorname{rel} \mathcal{A} \end{array} \xrightarrow{\operatorname{RP}} \operatorname{rel} \operatorname{rel$$

<u>HAM</u> Given a directed graph , is there a path from v, to v_n which covers all vertices

SAT
$$\leq_{p}$$
 HAM
 \ll \leq_{p} (sat iff HAM path) \cdot 1 chain of vertices for every variable
 $C_{i} \rightarrow \alpha_{1} \sqrt{\alpha_{2}} \sqrt{-1\alpha_{3}}$

SAT < 3-SAT (3-CNF), SAT < HAM

S: Longest Path: Given a directed graph and s,t. Find the longest path from s to t.

HAM ≤ Longest Path => Longest path is NP-hard

$$\begin{array}{rcl} HW : & HAM & path =_p & HAM & cycle \\ HW : & Dir & longest & path & \leq & Undirected & longest & path \\ & & & & \\ & & & & \\ & &$$

3-SAT < IND SET (G, K, is there an independent set of size k)

$$\frac{f}{F}: \text{ Construct } \Psi \rightarrow G_{\psi}, K_{\psi} \text{ st.}$$

$$\Psi \text{ is satisfiable iff } G_{\psi} \text{ has independent set of size } K_{\psi}$$
from every clause, create triangles, connect complements
$$(\chi_{1} \vee \chi_{2} \vee \chi_{3}) \wedge (\chi_{2} \vee \chi_{3} \vee \chi_{4})$$

IND SET & MAX - CUT

 $\frac{lf}{l}: \quad G_i, K_i \longmapsto G_m, K_m$

Fi has independent set of size hi iff Gm has cut of size alleast Km

20/8

We know complement of ind-set is vertex cover.

Conjecture: 3-SAT doesn't have a polytime algorithm

$$EXP = \bigcup DTIME(2^{n^{n}})$$

$$E = \bigcup DTIME(2^{n^{n}})$$

$$E = \bigcup DTIME(2^{n^{n}})$$

$$E = \bigcup DTIME(2^{n^{n}})$$

$$E = \bigcup DTIME(2^{n^{n}})$$

$$Cain$$

$$E = \bigcup DTIME(2^{n^{n}})$$

$$Cain$$

$$E = \bigcup DTIME(2^{n^{n}})$$

$$\frac{1}{2}$$

$$\frac{1$$

Assumptions: 1. Every shing represents a TM (say all invalid shings corresp. to
twial TM)
2. For any TM there are infinitely many representations
$$\leftarrow$$
 seems crucial
by pt
DTIME $O(n) \subseteq O(n^2)$ (like adding commants to C++ code)
D: fo_{11} $\stackrel{*}{\longrightarrow} fo_{11}$
D: fo_{11} $\stackrel{*}{\longrightarrow} fo_{11}$
 $D(: Frun M on input $\binom{M_1 n}{1 + 1}$ for $|x|^{1.9}$ steps
If it stops, flip output $(1 \stackrel{*}{\longrightarrow} o_{11})$
If doesn't stop, output 0.
Take any TM N which always halts in $O((input i))$ time (i.e. $O(n)$)
 Io show : N, D cannot accept same language.
Imput : $\langle x_N \leftarrow large, w \rangle$
N and D will disagree on a "large enough." string representing N.
 $(assumption 2)$
 $output d D$: Runs N on input $(N, w) \Rightarrow output N.$$

Space Complexity

SPACE (S(n)): Decision problems for which there is TM working space S(n)

TM: Input tape (read only) Work tape (read & write)

Functions (output is arbitrary)

TM: Input tape (Read only) output tape (Write only) Work tape (Read (write)

Obs: DTIME(S(n)) C SPACE(S(n)) { can't use more cells than # steps y P = PSPACE

SPACE (S(N)) C DTIME (20(S(N))

TM always halts \implies Doesn't repeat configuration

we always consider S(n) = I (logn)

atleast store which cell in input tape we are looking at

NSPACE(s(n)) : On every computation path space is bounded by O(s(n)) DTM: configuration graph : outdegree < | ° ∧→°→° NDTM: Contgn graph : some directed graph

NTM : S(n) -> build configuration graph : 20(S(n)) vertices

Accepted by NTM => Reaches an + edges using transition function accepting state $O(1EI) = (2^{G(m)})^2 = 2^{O(3(m))}$

DTIME(S(n)) C SPACE(S(n)) C NSPACE(S(n)) C DTIME (20(S(n)) SPACE(S(M)2) NPCPSPACE < go over all certificates, run checking TM. LENLEPENPEPSENPSEEXP 1 log-space SPACE hierarchy thm E.g. minimum in an array ; maintain index of minimum element (comp wing traversal over bits) Addition (is a+b=c ?) $a \cdot b = c^2$ f(x) E { functions (output tape) gas EL $f \circ q(x) \in L$ \underline{Pf} : f only accesses few bits of g(x)Recalculate g, output only that bit. qr E L > g E P > output needs index space E L Random walk -> P>0 (RL) () Undirected graph s,t is there a path from s to t $s = \frac{1}{2} \frac{1}{2}$ (2005) Reingold E L 2 Directed graph sot is there path from s to t? ENZ (trivial) (open) L=NL? (NL log 2)

NP C PSPACE 2 G-NP $\underline{QBF} : \exists_{x_1} \lor_{x_2} \exists_{x_3} \lor_{x_4} \exists_{x_5} \cdots \lor_{x_n} \mathcal{Q}(x_1, \cdots, x_n)$ QBF E PSPACE <- can design recursive algo $x_1 = 0 \left(P(x_1, \dots) \right)^{\vee} \left(x_1 = 1 \right) \left($) Recursion depth = poly(n). $M_{2} = 0 \land M_{2} = 1$ Combinatorial games : from configuration X is there a winning strategy for black? Two player Games with perfect information, no randomness E PSPACE no hidden things E-9. Poker Many such problems are PS-complete Poset Game: Poset Game is PS-complete Savich Thm 3018 NPSPACE (S(n)) C SPACE (S(n)2) \Rightarrow NL \leq L² TM with space bound O(S(n)), and an input x. A -> Configuration graph : 2° (S(n)) size, Def. 11 (head, state, tape) Is there a path from starting configuration to accepting confign? Given (, (' how to find edge (to (' - check in O(S(M)) space.

Is PATH (C, C', i): adaktor
$$\exists L \rightarrow CI$$
 of length $\leq 2^{i}$?
 $T(i)$ iterate over $C'' (2^{O(S(n))})$ choices
 $C = \frac{1}{2^{i}2^{i}} C'$ $S(n) \rightarrow S(n) - 1 \rightarrow \cdots$
 $\leq 2^{i}$
PATH (C, C'', i-1) $A (C', C'', i-1)$
an rewe space
 $T(i) = T(i-1) + \text{sbare } C'' \text{ divice}$
 $(spaceTI = T(i-1) + \text{oCS}(n))$
 $i = O(S(n)] \Rightarrow T(i) = O(S(n)^{2})$
Conclusion: Readvability on n nodes e space (O($\log^{2} n$)), time (n^{log n})
 $Time = (2^{O(S(n))})^{(S(n))} \leftarrow \# \text{stops}$.
Time = $(2^{O(S(n))})^{(S(n))} \leftarrow \# \text{stops}$.
Time = $(2^{O(S(n))})^{(S(n))} \leftarrow \# \text{stops}$.
The stops of C in each step
A problem is PS - complete if every problem in PSPACE reduces polytime
to B, and G e PS.
Thin: QBF is PS - complete.
Poset Grame = P

$$\begin{aligned} \psi_i(c,c') & \text{ is me } iH \exists path of & & & & & \\ \psi_{i+1} &= & \exists c'' & & & & \\ \psi_{i+1} &= & \exists c'' & & & & \\ \forall_i(c,c'') \land & & & & \\ \forall_i(c',c') &\leftarrow & & & \\ & & & & & \\ & & & & \\ \hline \\ \underline{Trick} &: & & & \\ \hline \end{bmatrix} \\ \end{aligned}$$

$$\psi_{i+1}(c,c') =$$

tormula
size is
$$f_{0}$$
 f_{0} $f_{$

Up Next : Directed reach is NL - complete.

We are going to do:
1.
$$NL$$
-completeness: reachability
If reachability $eL \Rightarrow NL = L$
2. $NL = co - NL$
NL-complete
A language & is NL -complete if every language in NL log-space
reduces to Q.
Log-space reduction
We say there is a logspace reduction from L
b L' if there is a logspace computable function f s.t.
 $|f(x)| \le |x|^{c}$, $x \in L$ iff $f(x) \in L'$
 $3/9$
 $3/9$
 $3/9$
 $3/9$
 $3/9$
 $3/9$
 $SAT \le exp$
 SAT

Proof defn

- BENL if \exists logspace DTM (verifier) $s \cdot t \cdot x \in \mathcal{G}$ iff $\exists y \in \{0, 1\}^{|x|^{C}}$ s.t. M(x, y) = 1
- if NDTM is given, Non-det choices can be written on certificate Y is large but since working space limited, we can't write whole y Hence, NDTM det on to proof defn ~ (not other way around) <u>stronger</u> <u>Note</u>: SAT ENL by proof defn
- · For certificate, if read once tape (only hud) then both defn equivalent.

Kes, give node & path to node given, can verify in one go. If t not one of them, done.

Ki ← no.of nodes reachable from s using length ≤ i paths Can you verify Ki if you are convinced about Ki_i Ci = set of nodes reachable from s using ≤ i paths Ki = 1 Ci | if v ∈ Ci ← easy cert. (give path) $v \notin Ci ←$ want easy certificate no neighbor of v ∈ Co_1 So Cz-1 given as certificate [+ path from s to u t Ci-1] For all vertices, $(Ce_1, its paths) \times \#$ vertices = $O(n^4)$ size of certificate

Mence, unreachability e NL (NL = CO-NL)

This pf also shows br
$$s(n) \ge \log n$$

NSPACE $(S(n)) = \infty - NSPACE (N(n))$
 $S = NSPACE (\log n)$
• HW: 2-SATE NL
• EXACT IND SET: Given a graph, number K, is the
max ind-set of size = ku
(nost likely it is out of NP and $\infty - NP$)
• min DNP : Given a DNE (or of ands) Ψ , K, does f another
DNP β equivalent to Ψ and size $(\beta) \le K$
• Succent Tournament Reachability (STR)
Tournament : Directed graph st. Vivj exactly one of (i,j) , $(j,1)$ is an edge
Given boolean formula Ψ on 2n variables
 $\Psi(i,j) = 1$ if $i \rightarrow j$ $i,j \in [1,n]$
 0 if $j \rightarrow i$
Given t, S is t reach from S.
Noting is said about time of Ψ , if exp then certificate can be path itselft
Say polynomial, then it is interesting
Nost likely out of NP 2 to-NP.
MI S of them & PSPACE

Want : classes outside P, NP but inside PSPACE

$$\sum_{2}^{P} : A \text{ language } L \text{ is in } \sum_{2}^{P} \text{ if there is polynomial time TM}$$

and a polynomial q s.t. $x \in L$ iff
 $\exists u \in \{0,1\}^{2(|X|)} \quad \forall v \in \{0,1\}^{2|X|} \quad M(x,u,v) =)$
It is a generalisation of NP (No v is NP)

EXACT IND-SET

M takes two subsets
$$U, V$$

 $|U|=K, U$ is ind and if $|V| > K, V$ should not be ind
 \implies output L .

Complement

$$\pi_{2}^{P} = \left\{ \left\{ \left\{ 0,1\right\}^{k} \setminus L : L \in \Sigma_{2}^{P} \right\} \right\}$$

$$x \in L \quad \text{iff} \quad \forall u \in \left\{ 0,1\right\}^{2(|x|)} \quad \exists v \in \left\{ 0,1\right\}^{2(|x|)} \quad (M(x,u,v)) = 1$$

$$\left\{ \forall u \Rightarrow \text{product}, \quad \exists u = sum \quad so \quad may \quad be \quad \Pi, \quad \Sigma \quad rap \right\}$$

STR
$$\in \Pi_2^{P}$$
 $\stackrel{HW}{=}$ (Not easy to see).

$$M(\alpha_1, u_2, \ldots, u_i) = \underline{1}$$

$$\begin{split} \begin{array}{rcl} & \text{Theorem} : & \text{If} & \sum_{i=1}^{p} \sum_{i=1}^{r} \sum_{i=1$$

Then
$$(L')^{c} \in \Sigma_{i-1}^{P} \Rightarrow (\iota')^{c} \in P \Rightarrow \iota' \in P$$

$$(x,u_i) \in L^1$$
 if $M'(x,u_i) = 1$
 $L = \{x_i: \exists u_i \ M'(x,u_i) = l^2\} \implies L \in NP = P \implies L \in P$

Oracle definition : NP SAT (NP using SAT oracle) NP C NPSAT Fu, Vuz M(x, up; u2) = 1 - Say comes with contribute L> want to do in polynomial. $\forall_{u_2} M(x, u_1, u_2) = 1 \quad \forall \ \exists_{u_2} M(x, u_1, u_2) = 0$ invert SAT outcome $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} (not trivial)$ $= \sum_{i=1}^{n} \sum_{j=1}^{n} (not trivial)$ More generally. $\sum_{i=1}^{p} \sum_{i=1}^{p} \sum_{j=1}^{p} \pi_{i} \frac{r_{j}}{r_{j}}$ $\pi_i^{P} = G - NP^{\sum_{i=1}^{P}} = G - NP^{\pi_i^{P}}$ Another thm: SAT - best known algo O(2ⁿ) time Exp time hypothesis: SAT annot be solved below 2" (anjecture) Can SAT be solved in linear time? ? ? open problems Can one show SAT & L ?

We can show, (using hierarchy thms) <u>Thm</u>: SAT cannot be solved in $O(n^{1\cdot 1})$ time and $O(n^{0\cdot 1})$ space

10/9

Chuit danig
$$\mathcal{E}(n \ln n = 1)$$

Language L is said to be in size $(\tau(n))$ if there is a circuit danify
 $\{C_{0}\}_{n \ge 1} \in L : |C_{n}| = O(\tau(n)),$
 $x \in L : iff \quad C_{1 \ge 1}(x) = 1$
 $P_{10}^{1} e_{1}^{1} = V$ Size (n^{C})
E.g. AND $(x_{1}, x_{2}, \dots, x_{n})$
 \mathbb{E} . The running in $P \rightarrow simulate that computation (gates are auxiliary
using circuit variables)
 f_{1} : The running in $P \rightarrow simulate$ that computation (gates are auxiliary
 \mathbb{E} . States for every time step
 $3 \cdot \text{Head}$ position for every time step.
This also shows $CKT - SAT$ is NP - complete
 SAT for balance circuits.
Is $P/poly \not\leq P$?
Given $(C_{1}), \times C_{1}(x)$ can be computed in polynomial time
Need to generate C_{1} in P time \leftarrow weaker class of
 $Crouths$.
Undecidable problems in $P/Poly$
If no size bound, every boolears for (induding Halting) has a clot.
 $(could be (ungo). The size = Polynomial, can we compute under. problem).$$

- <u>Goal</u>: INDSET does not have polysize circuits $\implies P \neq NP$

Karp-Lipton

N

$$NP \subseteq P/Poly \implies PH = \sum_{2}^{P}$$

$$(don't believe)$$

$$L = \{\alpha_{1} \cdots \alpha_{N}\} \leftarrow easy \implies e P/Poly$$

$$L = \{\alpha_{1} \cdots \alpha_{N}\} \leftarrow easy \implies e P/Poly$$

$$Ie will show if NP \subseteq P/Poly Hhen \quad \Pi_{2} \subseteq \sum_{2}^{P}$$

$$Ie \quad \forall \exists \quad show \quad if \quad NP \subseteq P/Poly \quad \text{then} \quad \Pi_{2} \subseteq \sum_{2}^{P}$$

$$If \quad L \in \Pi_{2}^{P} \implies \exists TM \quad M \text{ et} \quad x \in L \quad ilf \quad \forall y \quad \exists_{2} \quad M(\alpha_{1}, y, a) = 1$$

$$L' = \{(x, y) : \exists_{2} \quad M(\alpha_{1}, y, a) = 1\}$$

$$L' \in NP. \quad M \text{ has in } P$$

$$\Rightarrow L' \text{ has poly sized circuit} \leftarrow input (x, y) \implies compute \quad ckt \quad (Poly sized)$$

$$Pot \quad x_{1} = 0 \quad \text{if shill Shift} \quad y \quad sdf - reduction.$$

$$x_{2} = \cdots$$

it o flip, olw keep some

Now, given connect
$$\Xi$$
, we can verify circuit \leftarrow check if output Ξ
is connect.
even if circuit
is wrong it's fine,
just need correct Ξ .
 $\chi \in L$ iff $\exists chf$ computing Ξ on input $(x, y) \leftarrow c$.
 $\exists c \forall y \quad M(x, y, c(x, y))$
interpolant
of x, y

Hw <u>claim</u>: $\exists poly sized clet which on input x, y outputs z s.t.$ $<math>M(x, y, z) \ge 1$. (assuming NP $\le P(Poly)$

NP : Best Lower Bound ~ Sn

Boolean Circuits

Circuit lower bounds \Rightarrow P \neq NP

TM with advice

A language L is said to be in DTIME (T(n))/a(n) if $\exists TM$ running in time T(n) and there is a sequence $(A_n)_n$, $|A_n| = O(a(n))$ such that

13/9

$$x \in L$$
 iff $M(x, A_{|x|}) = 1$

Easy to show : TM w/ advice = P/Poly. An = boolean ckt M.An conv. to boolean ckt

Uniform circuits

- A circuit family is called logspace uniform if given 1^n , we can compute C_n in logspace.
- Thm: LEP iff there is logspace uniform family of circuits accepting the language (M, n) here a circuit w/ n input gates. need logn bits space.

Note: For cht lower bounds, we usually
consider arbitrary cht.
There is a function fn : f0,19" → 80,19 which requires
$$-\Omega(2^{n}/n)$$

size circuits ← Hint: Counting argument ← actually almost all
requires much
challenge: Construct an explicit fn
No. of functions = $2^{2^{n}}$

No. of size s circuits = # dags with a nodes?
edges = O(S) # circuits = 2 O(3log S)
cxt = adjaconcy list
$$O(3 \log 3)$$
 bits
wires jute s - gate 2
 $agge 2$
 $agge 3$
 $agge 2$
 $agge 2$
 $agge 3$
 $agge 2$
 $agge 2$
 $agge 3$
 $agge 3$
 $agge 3$
 $agge 4$
 agg

 NC^{i} : Class of problems which have bookean circuits of polynomial size and $O(\log^{i} n)$ depth (fan-in = 2)

Fast Algo => Ckt lower bounds [started in '11] Matrix Multiplication -> n things in 11el add " -> binay here logn depth logn depth for multiplying a; . bj. $\in NC^2$ * SOLE, Determinant, Rank & NC2 Reachability /connectivity ENC2 (Basically, linear algebra ENC~) $NC^{1} \subseteq L \subseteq NL \subseteq NC^{2}$ not easy to see Bripartite matching ENC? (open) NC= UNC' izo (uniform) NC <u>C</u>P P=NC? (open) : every problem efficiently -> 11el w/ much faster running time. P-complete Google : If any depth hierarchy thm. Q is P-complete if QEP and every problem in P logspace-reduces to Q E.g. Circuit valuation (TM computation -> circuit evaluation) CKT-val ENC >> P = NC (Open) E.g. Min-cost flow E.g. Linear Programming