
CS6106- Statistical Learning Theory 7/1

Instructor : Avishek Ghosh

course website : figure it out (content
, assignments & website

,
moodle

Tue/Fri -5. 30 = 7 pm

Extra classes- Saturday 3 . 30-5 pm

Grading : Homeworks 20 % (2 - 3)

Midsem 30 %

Endsem 30 %

Scribes 15 %

class Participation 5 %

What is this course about ?

1
. Analyzing ML algorithms from a statistical point of view

2. Involves a large of statistical tools/techniques that can be used independently
NOT about

1
. Theory of Deep Learning
2. Not particularly algorithmic

Reference :

1

. High dimensional Statistics - Martin Wainwright
2. Asymptotic Stats - A . W . Vanderbaart

classification (Binary (features)
d

Given data points (X1 : X) (X2 , Y2) .... (Xn , Yn) where Xie & I

Xi = 9 - 1
, + 1

Exal : Find a classifier
g : X-5-1 ,

+ 17

How to obtain this ? - Notion of loss function

Binary loss : 1 [g(x) + Y] = [1 ,
if g(u) + Y

Cerror) O ,
if g(x) = Y



construct "Empirical loss" hn(g)= [Hg(xi) Yi Y

we select classifier for which Ln(g) is minimized

gn = argmin Ln (g)
,

where I denotes

gEE family of classifies

Problem : 1 .
Performance on "unseen" data is not considered

2. I can be complicated , n can be much smaller

Upto this point , purely empirical (no statistics)

Statistical Model

We assume that (X, , Y
1) ...... (Xn · Yn) are i . i .d samples from

a joint distribution & having same distribution as (X , Y)

Then
,

for a classifier
g : X- > &11) ,

we can write,

(g) = E [11(g(x) + y3] = p(g(x) + 7)
(X , Y) *

Aug loss/

expected loss

It is a good idea to study ((n)
2 Questions :

Naive Bayes classifier
-

1 . Is L(g) comparable to inf Lig) ?
gl

whethergh is comparable with the best classifier in e

2. Is Lign) comparable to In (n) ?

Comparison between "in-sample" error and average
error for g

Assume g
*

= argmin L(g) [Naive Bayes Y
ge e

lesser loss

we write (Ign) = Lig *) + L(gh) - (nign) + Lt) - L(g
* )

al

- -
=> L(g) -gg

+ Lig*-

sup (2n(g) - L(9)/
ge 2



=> Lign) - L(g
* ) - 2 sup/in(g)-((g)) - ( *)

ge e

Remark : ① is controlled by (*)
② Lign) - (n(gn) < sup 1Ln(g) - L(g))

ge C

Remark : Performance ofh is governed by sup /Ln(g)-L(g)).
g = e

We use uniform law of large numbers to handle this

Empirical Process Theory
1 . Uniform law of large numbers

2. Uniform central limit theorem

Uniform Law of large Nos .

Suppose X,, X2 , ..., Xn ii . d random objects taking value in X . Let

F be class of real-valued function on X
,

what can we say
about

Supf(x) - E f) = z

In particular,

① Whetherz-o when n is large ?

② Can we obtain non-asymptotic guarantees ? ". e . guarantees for every n

③Can we provide conditions on f it - E converges to 0 ?

Connection to ML and statistics

① Binary Classification -

Xin (Xi ,
Yi)

+[15gx +y] : ge e)



② M-estimation think as-re of loss In
↓

En = arg max t [hm co

Of

where x.... In areiid observations,

② is parameter space

No are real valuedfo parametrized by 0

Examples , 1
. Mo(x) = log po(x) Maximum likelihood estimator (MLE)

2. mo(x) = - (-02 = sample mean (Mean estimator

3. Mo(() =- (-0) & Median estimator

In mean estimation
, target quantity forOn is

&* =

arg max Emo()
OE distance blu On and OP

-

Similar to binary classification example we want d (On ,
O * ) to be small

It turns out d( , 0
*) is governed by 2 sup/moi) -mo

OE

which is an instance of uniform law of large numbers.

Strategy to Control Z

① key Observation :z concentrates around EZie .Esp
(concentration of measure)

② We control #z through techniques like symmetrization (Rademacher Complexity
or chaining (vc dimension)

Remark : (Asymptotic result) # is called "Gliven Ko-Cantelli" if z - o

almost-surely as n -

Assumption : Sup(f(x) [BX + F



McDiarmid's inequality
Suppose X1 , X2 ,

... Xn and 9 : /x ... xYn- > R satisfies

"bounded difference"
:

1g(x ....., kn) - g(xx - . xi +
xi' , xix - - -(n)) = C,

Va,
... an vie (n]

Then we have

P9g(x, - - - (n) - Eg(x , -(n)(,t)

exp)-
1 - +
-

- 1

&

Amk : The bounded difference
says that a"that is not too sensitive

on any of its argument concentrates.

ApplyMediarmid's to Z

z

=si)-
we construct

g(x. . . un) =Sup
-E

g(x , . . xi) . -
- n)
=Sup(fi)+i) -E

=sup) -Effe

-
- g(y - un)
+supis

: 19( .... en) - gla -x,an))A↑

by switching Hi, Ma both side



Hence
, o satisfies bounded difference> apply mediarmid's inequality-

IPCZ-EZ(t) [exp)) = exp(-
118 IP(z-EZ1-t)

exp
Then we

say up
. 3 1-8,

zlz + Blogt
-

- (very small betC
Remark : we need to control

ES +(xi) - E +(x)
To control z D +Ez

② Enrol Et !

concentration

Inequality CHoeffding) w. p- 1

indep -
Suppose,

X.... Xn r . r . such that a Xi -b
,

almost surely
where a. .... an ,

b
, , ..., be are real numbers. Then for

any >

PS[(xi-EXi) > 7) -exp(birai)2)
and

P([(Xi - Exi)( -+]= exp)bi-ai)2)
Proof : Let S = <Xi-EXi) . Ex J

,
0

.

we have

P(Syt) = P(ebyext)orexset+)Aw : Find 12 for which

edsest is the but sat
isn't - Q



4s (t) = log IEe>S Clog-mgt/cumulant In

↑ (b) = logI ed[,
(xi - Exi)

= log M, ed(xi
- EXi)

->

independence

J(xi - IXi)
= Ei log #e

-

Fix i
,

we analyze
= Exi -⑪

MivX ;
(x) .

Need to bound Y
-

~

bi-EXi < U1 ai-Exi almost surely
key

term.

O O -Taylor serely
No (3)=+ tr (3) + Me"(c) (34,

* ↑(0) = logEe0(Xi
-Exi)

= O
0x)

* 41 (0)= logEe=#
put 3 = 0

=

E = 0-

Y(x) = Yn"()b
↑ "(s)= Evex) = Fe, up

we will show : Yo"(3)30 for any
I

Consider a r.w . V whose density w - r- t - density of u

is etYEexu

Presen (u = 0 = pu = 0 = p = 3)
-



↑
" (s) = E(X2] - (EX)2 variance of

-> 0
.

1mk : Support of U is ai-EXi ,
bi - EX i

support of Vis -
(Pu = 0= pr=)

Exercise : For
any

random variable V bound,
-

var (v)(aig prai , be bi

=> No (d') = Var (v) 1 (b
we have

,

to (a)= In"() (bi-a

Now
, substituting
↑ (1) = ↑xi-exi(d)[bi-ai

substituting this in Q,

Pr(s =t) < exp)-x+ + [bi -ai)2)

optimizing over
J , put -ai

Putting x = X*,

ir(s =

t)[exp)air)
i= 1

To get other side of concentration put Y : =
-X;



Readingassignment :

1 . Go through proof of le 2

2. Revise martingales

Central Limit Theorem 141

X ,, X2 , - ... Xn independent with mean u
,

variance o
2

En= Xi Reading : Convergence of r. v.

CLT :

↑nu)NO
convergence in distribution

suppose n is very large (for E> 0)

IP(vn(* ) =t) = p(N(0 , 1) -t)
scaling r . V. by 2

, variance scales by a 2

↑ (vn ((n = u) = t) = P(N(0 , ru)yt)
We use MGF based method to upperbound

P(N(0, <2) > t) 1P(e)No , rr)
y
,
ext)

- e-St EedNCo ,wa)
log eJNCO, +2)

77

(s))= exp)-be

+/umulantEedNco ,22)E (Exercise

Using this,

#(2010 , 22) >z) exp) - St

+-
P(N(0 , 22) >z) - exp(-)

* QT :

P(m(n -u)xt) ex(- ) - (xT)



Using hoeffding's we get,
X

.
... Xn , ECX1 = M

, Var(X) = +2
, a Xb a . s.

P([Xi - E(X) = t) = exp)2)
Let t = r . t

=> P([xi - E(X] > it) = exp)ca()
=> P(m((n - u)yt) = exp() - (Hoedings)

Comparison :

If a Xi <b a .
S

. , then

⑫T : exp(-) 22 - (a)
Heffding's : exp(j)

With this
, CLTbound is exp() - exp)2)

(CLT) (Hoefding) .

Remarks : * Error upper bound matches 610 CLT
, hoeding

* 22 can be much smaller than
range , makes CLT bound

sharper/stronger
* CLT holds asymptotically and is an approximation.

On the other hand
, hoettling's is exact

, non-asymptotic (holdsfora
Berry Esses Thm : How close apx w . r -+ CLT (approximation scales)Cv . deep thm-not in course) ~u

Alte : MGF based techniques we use - (Cramer-Chernoff Method)



Confidence Interval

Suppose X.... Xn iid random variables with EX = u
,

VarX =
~

a Xi 1 b almost surely

&

Problem : We know (a ,
b

, 22) and want to estimate e.

We obtain a set (interval)
,

also known as confidence interval (CE)
,

wherea

lies w . h .

p
-

CLT based bound (classical) (for 30)
n -> 0

By CLT
, P(((e)(2 + ) -> P(/Ncont)

cunion of two events)
Put t = Ex (C-quantile) s . t . P (INCO , 1) =12) = 1 - X

w -

p - 1 - x
,

- Ex m(i)2

=>
-

Length of interval Ex/2 shrinks with n -> 0 asn -> a)

Hoefding's for C .

1

.

- 2t2

P((xn(kn - u() = t) +2)(a(z)
I' . e . t = (b -a) g

&

so
, wop . 1-c ,

Length of interval,

-a

2(in-u)= (b-a)log so
, It is better

u ries in [En-"
,
In + "T c .

e
.

casymptotic)



Sub-Gaussian

Assume X-NCM, r2) .
We know that

EeX(X - u)
= ex22% for any

X.

This motivates us to define class of r . v . exhibiting similar

properties.

Yet : A r . v . X w/ mean u is called sub-gaussian if there exists

a positive number
a such that

EeX(X- u)
< ed222/2 for all J.

It is denoted as X-subG(r) . & is called the parameter
of sub-Gaussian r. v

., 22 is a proxy for variance.

ExamplesQ Gaussian

② Rademacher reve :

Ee 5-1 ,
+ 17 with equal probability evel

We want to show that E is 1 sub gaussian (2k) ! much biggerthana
M = 0

, exc =ce
r = 1

X/2
③ Bounded r.V. -e

suppose a X = b a . s.

show that X-SubG(b)

Lastclass : log eSY = (b)
=> Feb < exp(5t (a) - exactly what we want



Hoefding's inequality for sub Gaussian I not just for bounded r . v .]

suppose X.... Xn are subG(a ; ) and EXi = u ; then,

for all to

P(E(Xi -EXi) yt) exp(z)i= 1

P([= (v) <
- t) 1

Remark : Vi = didi, ,
we get back hoefding's for bounded r - V . (Predect

&roof : Use Cramer-chernoff technique ,
bound on Fe *X

comes

from def of sub-gaussian directly !
Reading exercise :

Chap 2 from HDS (Martin) - Sub-gaussian (bigger clay : sub-exponential
- Martingales.

17/)
Last time : Concentration of measure

- Hoeffding's ineq for bounded r . v.

CLT

- confidence Interval (C . I . ) construction

-sub-Gaussian X is subG(r)

if EeSYere/f)
- Hoeffding's ineq for sub-gaussian

Properties of Sub-Gaussian r . x.

① X, , X2 -SubG (r. ) , SubG(52) and they are independent /
mean u ,l

Eed(2-yetwr)* *X2 Eed( +Y -U
=I eXX1

=Mi

~ SubG(V++2)



Reading exercise : Sub-exponential w. V . (chapter 2 from HDs)
*Property : If X-Sub5 then X-a subexponential

where X.... Xo-subsNorm :

y=) 11 Y 2 = X & +... + X & ~Subexp.

Martingale Based Concentration & Doob 1956 (rejected Shannon's paper : 1)

* Bounded
, Sub-5 , Sub-exp .

We require X.. ..., Xn to be independent

* Independence doesn't hold in many settings - online Learning/Time-series
* Need to deal w/ dependent r . v's

Martingale random
sets ↓ variables

# F2 E
...

Pair (Y*
, Filte

,

is called a martingale if
↓ ↓

Y/ Y2 --

1 . ECHYiB2 @

for 1 > /
2. ECY+11E) = Y

,
a . s.

Ex : ① (Partial Sum)
Let X1 , X2 , Xz --- be iid random variables wh mean u

Define
, Y= X : - kee / finite variance

This is a martingale because

DECY1]
K② E(YHIX .... *k] = #) [xi - kl + X(x - u(X ...

- Xx]
-

contains all

information abt XI= E(Y/X:X,2) + E(X+u(X , 0 --Xx)
O

= Y



Example : (Doob Martingale)
Given a sequence of independent random variables EX

= 1.
We define

Yk = E[f(X) /X1 ... Xx] for K = 1 . -- n and

%
o
= [f(x)] ; where X = (Xc--- > Xn) and f : /"-> R

with Elf(X)) < &

we now show this is a martingale

Yn = f (X) .

So
,

f(x) - Eff(X)] = Yn-Yo
~

= - 1
difference

Claim : Sy is a martingale writ . EX

F = ↓ (X , . - · X
,1) = set / all possible functions of

X .... Xi (r-field)
over X. - - -Xi absorbs

(.. - Xk① ELIYk1] = * I(f(X) (X-
-- Xn]) Ce triangle inequality/jensen

< Elf(X)) < d

Ep :

EECY(X] =(t]-

② E[Y1 F] = E(Ef(x) IX . . . . X (+ ]( claw of iterated expectation-

X1 ... Xk]) Toerrule : smaller set
Wins

= E[f(x)(x, . -Xx]
= Yk

Tower rule : IE[E(z1S
, ]/Sc] = E(z) s , ] if siaSu

Martingale difference

A requence (Di , Fr
,

is called martingale difference if DK is

adapted to Fi and

① E(PK1 E(PHIFT = 0



Natural wmartingaleD
② ECDlEn] = E(Yk -Y(+ 1 1Fn) = Yx - Yy = 0a . s .

Thm (Azuma-Hoeffding's inequality) [Hoeffding's for martingale differences]

Let (Dk ,Fi be a martingale difference sequence where an D b as-

for K = 1 ... n .

Then for all t 30 ,

TED] -exp( -ah) and

P[[
=,
PK-t] exp(k -a(2)

* Bounded martingale difference concentrates.

* Azuma-Hoeffdings for Martingale sequences - skipping , similar.

Proof : Similar to Hoeffding's bound for bounded r. v
., in particular we use

Cramer-Chernoff method
[markov)

Let S = [ Dr ; P(Sc, t) <P(eds >ext) = e
- b+ /ex

- exp(- yt + V
, (x)) where Ys(d) = log I eXS

M

Let us look at
= log #e*

#Le* /Fn-1] = E[eXPuede Da (En-1]

= edD (e(fn
+ ]

-

Using same technique MGF of a mean zer,

as hoefding bounded random variable

= (ebi . exp((bn -an)( (



Last time we were looking at 28/1

#sup Put-Pf
:

E( + [+(i)
- E + (x))
X-

* Rademacher complexity : symmetrization chaining
For a set A , draw n elements a --an

CEmpirical)demacher aug : &(A) =

#Sup I l
* Examples : 12-Ball

, In-Ball
ii . d . 11 colequal prob twep)

(Yin) (Yn)

Today : Connect R . C . to U . L . L .
N

- symmetrization argument
- Bounds of Sun linf-Pf

Empirical Process Setup

- X, Xz ...., Xn wid D

- F : class of real valued functions

Let,

F(x,, X2 , . . ., Xn) = [f(x) , . . . , f(x) : fe EY

A random subset of IR2 Compute rademacher complexity
of this

En (F(X1... Xn)) =

ESup I [f(Xi)Ei)
(Empirical Rademachera

complexing

Rn(F) =x. x

* (F(X..... Yn) -> Rademacher complexitya
= Ex

... xn FeSup1x - (l)

Note : E is a class of In
, F(XI - - -Xn) is a random subset of



Theorem (Symmetrization

We have
ESUP linf-Pf/2Rn(F) where Rn() is defined ina

&roof : X . . ., Xn vi. i . d (X) component-wise

Xb
Withdraw (X, , ... , Xn') from same distribution

*"et
. (X...... Xn')H (. . . .. Xn)

(independent)
#xf(x) = Ex)t[f(xi) - ⑪

*

ESup1[f(xi) - Ex
Using independent of X

Y
=

ExSup Ii) -Ex
-↓ constant

IExSu ) - +xi))
um

(symmetrization argument)* sup(o) is convex
, 101 is convex ,

So use jensens inequality
- - Ex

, X Sup ( +xi) - +xi)-----
---

---

Llaim : f(Xi) - f(Xi') is distributed identically to

(+ (xi) - f(xi))) Ei
#Intuition : E : flips sign ,

but Xi , Xi'i . i . d
, so they switch also wop . Ye.

=

Exxic1n [2 ,
si(f(xi) - +(xi)))) Sup (A+ B)

= Sup (A) + sup()
[

-
> Ex

, xisu / [i(f(xil)) +
"

= 2Rn(F)
#



Remark : In most cases we condition on X1 . --Yn (C . - -n)
.

So
,

in this setting
Rn(F) = En(F)

Simple Bounds on Rn (*)

Lemma (Massat's Lemma) : Suppose A is a finite subset of"with

Cardinality 1A) . Then,

Ru(A) =

Emax Ii(IA)ma
A rroof : For non-negative X

,
we write

&

EX = (P(X xx)dx (Exercise (

O

#otation
:= all , Zi==

# exp[y = jpex(
1

( = 1 actually)
= Side

+ Splats oallx)a
Fraisi mean o so direct hoedingto

= 1 +2jaloga
-1 Ei /

due to

lat/

= 1 + 2) x
- 3dx = 2 -⑪

We have
,

I exp[max =

Emax expessincreasing (

-> EE exp]A



⑪ can be re-written as, (maxsa , by = max sa2, by for a
,

b >

E exp([max2) I ⑭

*Eact : Show that * e
** is convex (CC > 0) (composition)

using jensen's inequality, max() > maxl

exp(Imax (2) EE exmax] ZIA)

# max latel < YogzIAl max Iall
at A

(some bug in pf = in equ (11)
Application of ULLN

Apply Mossart's Lemma to Rn(F)

Assumption :# is Boolean
,

f(x) - 50,13 xeX , +- E

Classification , testing
** Let us fix F and (X1 - -

· Xn) = (20 -- xn)

#Su lif-Pf2an(f) = 2n(x ...

[ I
F(x ..

.. xn) = E+ (x) . . · f(x) : f + #Y isg(zFml)m-
= !

* If (F(X 1
-· Xn)) ~ 2n

emk : Growth of F( ... (n) is

EsuP It-Pf important (different from the size of
function class)

* Polynomial discrimination P(n) = n

(F(0- xn)) ~poly(n) Elint-ponyekedSion



Lastclass :Symmetrization to show that 31/1

E sup lint-Pf) = 2Rn/C - - - xn()
E

where
F(... (n) = S(+(x) .

. . .,f (n) : f - =] - M

We condition on X1 = , :
-- ..

Xu = an

-> E Rn (F(X , ..
- Xn)) can use instead L

X1.Xn

(Recall)
Lemma (Massart's Lemma) : Suppose A is a finite subset of"with

Cardinality 1A) . Then,

Ru(A) =

Emax Ii(IA)ma
Using this

,

Rn (F(---(n)#max
ignoring

universal constants

*Want
upper bound on 1F( , ---(n)

#sumption : E is boolean .

f(xi) =50, 17 Fi
, feF

* F Boolean
, 1F(.... (n)) 12"Is this useful ? (no)

N Rn))
set or t is not

learnable (no matter how many samples)

*
Polynomial Discrimination :

F has polynomial discrimination if there exists a polynomial p (0) s .

+-

(F(. . . . xn)) = P(n)

Ex : If e(n) =nd , then Rn(E) ofCogn



&: How to check if In has polynomial discrimination ?
↳ vC dimension (Vapnik Cherronenkis] [A combinatorial object]

Let (v C dimension)
shattering : A finite subset Sec....y is said to be shattered by a

Boolean class & if

1 F( . . . xm)) = 2m ; ((x .. . xm) = 50 , 1ym

The VC-dimension D of F is the maximum integer D for which any set of

Ex . - - xp Y is shattered by E.

* If Sx ,
... xpY shattered for every D

, VC dim is o

Examples : O Intervals on IR

D = 1 Say is shatted
Seete = 5 + 0 , as

: a eR3 -

where I H( a
, x -
q)1H( - a

, x +2)
(-0

, a]
x) = St ,

ifxza

O
, /co x1 x2

I I I I I

00 10 11

[ cannot enumerate 01]&Fendto
CabibxCache)

: abi Ey

Vc (Srect) = 2

·

O

I can't shatter !

O

③ Lemma : Let I as a D-dimensional vector space on real functions on X
Let

, F =

< #
(f > 0)

: - + 8 Y .

Then
,

vc (F) is atmost D.

If : Let Ex ... - D+ 13 and consider T = & +(x) -- - fepzl : + + 8)

: I some coefficients ERPH + 0.

D+ 1

29if(i) = 0 for all ++ U = V
* jevaluation =

-

dual space)
i = 1



Sinceto
, whog ,

Findex kst . <K > O

Let's assume F shatters Sx , --- , then there exist

f + US
f(xi) < 0

for all : st . Gi > o

+ (xi)301
11 10

With this,

ii) = Edit < O

i: <is 0

- -

20 20

a contradiction.
E

VC dimension and ULLN

Remark : SSVC lemma can be proved using induction and "down-shifting"
-

(read pf in HDS- Chapter 4 Prop .
4 . 18)



chaining
Covering and Packing :

Let (T
, p) denotes a metric space T with associated metrics

(p : TXT = 1)

⑨ (0 ,/, 0
, 110 ,
) = o ift o = (non negativity)

⑧ p(0, ) = p( , 0) (symmetric)
② p(0,) + 1(,) p(0 ,) (Triangle inequality)

Ex : R
& (or subset(

sca = 110-ll = (510 - (4) "

EX : Boolean cube = 50,
139

~ (0,
) = dy(0 ,

) =coordinates at[whicho, differ

Normalized hamming dist=0;])

# : CC0
, 17 : Set of all continuous functions in 20 , 1]

d

#elvic : (Sup-norm) sup(f(x) - g(x)) =p(f
, g) = If - gla

xe(0, 1]

EX : 12 : space of square integrable fus in 20
,
1]

11 f -glz = [S(x -g(x))2dx]"2
EX : = (M ; (0, 13)

Il f -g(z = [S
.

'

( +(x) -g(x)) duc)"



+ /2
Covering Number : A S-cover of a set T write is a set

201 , ...,
ony CT St . Voet Joic .

t . 3(0 ,
0:7 S

Covering Number
,

N(8
,

T
, e) is the cardinality of the smallest cover.

* 31S2 ,
N(S,,

T
, 9) > N(S2 , +,p)

EX . Unit hypercube
d = 1 : [ - 1

, 17
, plao = 10-01

NCS , C- 1 , 1] ,p) EY + / (break into intervals of 25)
z S2s,....., S

a valid A I &

cover - I 1
constructions-

Extendtoa
TW5

NIS
, 2-1 ,

+ 179
, 101/d) = (1 + 1 dzdue to grid

Ex : Binary Hypercube : 5-1 , + 1y9 = Hd
N

fix take all combo
.

Hmpo ,
0= Sa ( - S)d

r( -S)d7
Nu(8, Haip) 12

T(S) = SoeHe)0j =ofjxS)
-

turns out to
S = [1

,
2 ,

. - - +C -3)d7]
be a lower bound Match exactly on S dr < S.

Packing Number

A S-packing of a set T w - r . t . a metric
s

is 901..., ONY CT Sit.

p(oi, oi) > & vije <N] , ifj

Packing Number MC6
,

T
, A) is the cardinality of maximum such set

⑳



Lemma : For $30 we have

M (Is ,
T

, 1) & N(S ,Tie) MC
,

T,

&mark : These numbers are orderwise equivalent.

If : (a) Let So.... ONY be maximal set of 8-separated pts for (t, 5)

MCS
,

7
, p) = N

.
Also a valid cover

o
&

O

O
*

all dist S
·

8 => Add to M(S
,
T

, p) to get a better

g

ON packing number !

(b) Let so 1, ..., onl be min set of pts f-cover

⑳O => M(28
,

T
, p) = N(S,

+
,p]

o
O

E

Examples.

position:Let1denote
some norm

.

Also
, Br = EE, l

M (SR, BR , 11 · 11) 1 (1 + 2)d Ceasytoseam

↳roof : (volumetric argument)
Let X , ... Xx denote any set of points in Br that are fR separated

i . e ,
IXi-Xi/IL SR itj

Then
,

the closed balls

i (xi , &r) = EXERd)(Xi - X11 =BY
are disjoint



Moreover
,

alltheseballs arecredwithal in
"

=> M(0) = () + zd /
#Normalize : ↑ (6

, BR <
110 11) <(1 + 2)

Notation : covering number/s-net

Example : Cover/Pack a function class.

& (On , 02) D

Proposition : Let of d be a non-empty subset with diameter D
V 01

,
82

Let F = 5 to : o 07 satisfying (fo
,

(x) - fo() - + (x)110 , -02

Fix a measurea

.2(f ,g) = ((f(x) - q(x))2 dg(x)

Then 6 > 0
,

M(5
, F

, d) (1 +2) whereI
If : Need to find R

.

Sto
,
() - for (x))

*

&g(k) = S + (x) 110 ,
-02/12 deep

x
x

[ 1/2 110 , -812
=>
e(fo ., for) 1 11 FIg110-a1 ①

From D
,

to find a -packing for ,
it is sufficient to find a

gll packing in8



M(S
, E

, p) < M(1 , 0
, 10/12) (packingfor seowns)

I TII
g

B(a
,D) = Ex + (d)IX - all =Dy

=

↑(g) Bla , D) , 110112)o+a
&


