
Lecture 04/01/24

Optimization Problems

↳ NP-optimization problems

set of instances (finite)

For
every

instance there is an associated set of solutions" for the instance.

cost assigned to every
solution

Number of solutions for a given instance is finite but
may be very large(in termsofa

instance)
Optimization problem : Find a solution with minimum/maximum cost

NP : Given a possible sol" it can be verified in polynomial time if it's actually a

valid sol"
,

cost can be computed in poly time.

The decision problem of
Trivial : Enumerate over sol"

, so y much decidable problems·
deciding whetherA

But
,

bottleneck-time . sol" with cost =K

Finding E

NP-complete problems are not equivalent optimal for an instance 7 and
solution is

mrt . approx. Some problems are v · hard MP-hard
.

number K is NP-complete

to approximate
Partitionproblem : If ESi = 2 C

④ n objects .
It object size si

then pack all objects iff -S
Two bags with capacity(each -

/

Pack maximum #objects in the two St- ESi = C i. e . partitioning
bags .

NP-hard opt problem·
into two equal subsets

#4 : Order objects so that 4-S2 [ .... Sn

At its step put object i in bag1 if fits, ow -amatlete3
put in bag 2 ow

discard all remaining objects.

2 2 3 3

-

I
S0x clearlyS 5 not optimal.
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Approximation algorithm :

A polytime algorithm that outputs a solution for each instance along with

a guarantee or bound on how good the solution is.

A CI) = cost of solution given by algorithm for isistance I

Opt(I) = opt" -"I

Bound on 1 ACI)-opt(I) / =- Absolute error Bounded ideally
33

by a"constant
~

-OPECH) E Relativeor r

This algorithm satisfies ACI) -> Opt(1) - 1 for all instances.

k instead of
perbound on opt :

max K st . E si < 2 c

i = 14 using the O(F)
take objects which is unknown

ie. [ > 20
greedily. bound error by

comparing to

=> OPT <K . upper bound for

max , dower bound

claim : ACI] K-1 for min problem

If : Suppose SK- was not included

< >
·--

Ci
· I

C

4 + Sk- > C
= 4 + 2 + 25k + > 2C< Sk-1

CD + Sk + > C

-
4 +24 + 2 +

> 2C

Ca <Sk +

+ Sk - + Sk 25k +

This contradicts the fact that

&,
x .

Edge-coloring
Instance is a graph and a solution is a coloring of edges st edges with

common endpoints have different colors. Cost= no of colors used to minimize .

max degree = = Y distinct. Opt(1)



lizing thm : It is always possible to color such a graph withA+ 1 colors.

Deciding if opt = 1 or At1 is HP-complete .

Given a graph ,
soln is a spanning

tree. Cost is the maximum degree
of a vertex > Hamiltonian path .

(NP-hard)

Non-trivial aly (end of course)

↳
Always find a spanning tree with max degree one more than optimal.

Logistics
1
. The design of approximation algorithms : Shmoys & Williamson (primary reference)

2. Approximation algorithms : Vazirani (problems + more examples)

Evaluation

Assignments + Midsem + Endsem

(Problems from)books

Vertex Cover problem :

G find smallest subset of vertices covering all edges.

im : There cannot be an algorithm with ACI) = Opt (1) + 1 for all I

unless P = NP .

show if such an algorithm exists
, we can find optimum in polynomial time.

give input - two copies Edea :

construct instances where next suboptimum
E G

solution is far
away

from optimum.

Approx => exact -

can repeat this constant # times
,

to refute any additive approx.

ACI) = O(I) + 1 2 (using may-match) question not studied
well for additive.

ACI) < OCFS +

E ?



samplification of) 8/1/24
gaps

If J k - constant approx
= subset with val > X

[I ,V) -> 1 (mult by 1+1)

yes --> OPT = (k + >V

no -> Opt < (k+)(X - 1) = ( K + ) V - (k + 1)

Run
approx algo on 5

=> Any to I is yes iff the sol" obtained has value > (K+)V- K

cyes , no instance have

In general for problems with weights, absolute
gap = k)

.

approximation is usually reluted via scaling arguments.

special case of Integer linear program

x -> takes value O or 1

indicates whether ith object

is included or not

H

[six ; 1 C Any 12P reduces to

i= 1

max 22 Vici ·Ainteger
A variables restricted e

be 0
, 1 lin constraints

and objective.

clie E0
, 14 Eindicators using bits]

④
Le relaxation pretty bad . High density high size objects)
--

-
04xEl

Allow variables to take tractional

values between O and I

optimal value of LP will be an upper bound (maximization)

on the optimal integral solution.

optimal tractional obtained by a greedy algorithm .

Sort objects such

↳ ... Y and at ith step as large a fraction of ith object aspossible



challenge : Come up with ILP so that integrality gap is less.

Modification : Remove objects with Si C .

-

--#
U

2 C

Cap = C

S 1 C

Greedy : value = 2

opt = C -

A > Opt-Vi

Ifractional object
can contribute almost4)Fe
.

Opt A + Vi

Fix ?
--

Take another solution as object with maximum value ! (out of six2)

output = larger of these two solutions .

Stilll .... Opt < A + Vi

A Vi

=> A < Exopt (t-approximation algorithm)

An algorithm for a maximization problem is an <-approx · algorithm if for

every instance I ,

ACE) > <. Opt (1) .
where a [

For a minimization problem,

ACI) < < . Opt (i) where <

Instance where Aly gives ! the optimum integer soll

c = a
[V

= 9

c = 1 V+ 8 HS zV zV

de ?· v = 17( = 10

E + E &+ EE E-

-V-
& OPEN



Further improvements ?

Opt = A + Vi
un

ensure this has

small value·

1 .

Take all possible subsets of size atmost k which are feasible & select these objects.

"Cardinality" Icolog3

2 .
For remaining objects remove objects with value > min value of K

, or

objects

capacity > rem - cap.

If Opt has <K objects ,
we get exact opt

If opt has >ki objects ,
we get maximum value dements (fist) and

then greedy is applied.

Let Vi be missed. Then opt/pu Vi is feasible .

value < t

k+ 1 .fractional object in

greedyation.As ↳
* LP bound
-

Opt < A+ Vi

=> A opt (H)

Lecture 9/1/24

Polynomial-time approximation scheme

It is a family of approximation algorithms parametrized by an error parameter

- > 0
,

such that algorithm runs in polynomial time for
any
fixed < 0 and

has error bounded by E . opt.

Minimization : A()(I) =(I+ E) Opt (I) for
any

instance I

Maximization : A(2) (I) > / = 2) Opt (I)

↓
fractional object in

greedynation
.

* LP bound

Opt < A+ Vi

↓
To get better approximations ,

ensure that Vi is "small"

compared to opt.



PTAS k largest valued in opt
Fix a parameter > 1

-

For all subsets S of size almost K

that are feasible
! agreed

iso t.Isum of sizes =C)

1) Select all objects in S
If EK objects in opt ,

--°

we get optimum .

2) Remove all objects whose value the minvalue of S when S = largest valued
objects in Optimum,

3) For remaining objects fill using greedy this step doesn't change opti

output will be the best solution over all choices of S
Every remaining object
has value<

This gives
a solution with value> A Op

greedy solution k+ 1 .

> opt

Runningtime : 0(knK+ 1) -Polynomial time for -value of
any fixed K : Fractional obj

K+ / objects
opt.

-

k+1Stil 'T, a tight exampleo one
-

approximation ratio

↓ opt will not include

this object.
Alg pt but greedyalg . always does !

#Ce C

Euclidean TSP Euclidean
dist

O Simple polygon with

minimum perimeter
[Sanjeev Arora] · I

with given points
↳ O

as corners

Gave a PTAS

for euclidean O

O For arbitrary graph ,
no PTAS is known

TSP . O

(104-approx is best)
[to be done] But no proof that PTAS don't exist

O

for metric TSP-



Fully Polynomial time approximation scheme (FPTAS) PTASY FPTAS ·

ACE) should have running time which is polynomial in both n and Ye

E
our earlier alg was 0 (tu"

+ 1)* not an FPTAs
.

Si Sa Sa ... Sn

YI V2
- ... Yn

If all values are 1
, we have a simple greedy algorithm.

If all values are bounded by some constant B and B is a small number.

max possible value is B . n

Use dynamic programming
For each value OIVIB find smallest size subset whose value is V

.

S (i ,
v) = smallest size of objects that are subset of first i objects with

value > V
.

O V= 0
s(t , x) =

&
St if + > 0.

S(i+ 1 , ) = min[S(i ,) , Sin + S/i , -Yi +)y
m include it) .

exclude it

Ringtime =
0 (B

Si Sa ... Reduce values of these

...... E objects by scaling them with

YI an appropriate factor

vi =Ike 3 .Bisaboundedby
polynomial in 1.

max

value of an object.
=

)ax)/ numberofits Question : How bad is the approximation-

Vimax=
For this instance ,

B = M . Te can find optimum for this in 0 It



By taking floor
, amount lost from value of each object is at most Emax

(in modified instance) n

Hence
,

amount lost in total

<UXErma o Gopt.

Opt(I) > Opt(I) - E. Umax
.

4
modified -> (l - 3) Opt <I)
instance

Lecture 11 / /24

Set lover

Given a set U = Se , e2 , ..., en 3 called the universe and collection C of

subsets of U, C = [S, Sc .... SmY
. Si EU and each si has weight wi

Um Si = U
. every

element in universe is contained in some set ina

solution : A subset C'of C such that union ofsets in c' is also U.

C' -> set cover. the sets in C'cover U .

Cost = the sum of weights .

choose min cost sol CNP-hard. reduce from vertex cover)

Min - ut
spanning

tree special case (PTOME solvable)

Connected subgraph with minimum weight
Need to cover all cuts in a graph

②Os
I atleast one included

in spanning tree.

Approximation Algorithm
1
. Try greedy algorithm .Idoesn't work exactly , but great for approximation



1
. Pick the set for which the ratio of cot/no of new elements covered

is as small as possible

2. Repeat this till all elements are covered

For VC problem. /Hedges left i.e. pick max degree and do repeatedly

o opt Hence, not an optimum algorithm cleary
.

O chosen -

How bad is this algorithm 2 [Analysis]

Whenever a set is picked in algorithm assign a cost of (Si)/#new elements
covered

To each of the new elements covered.

An element will be assigned cost only once when it gets covered in algorithm.

a 0 0000000 o o P

Adding cost of all elements total cost & equalityifsete
and sum over all sets

For any setSin C
, let cost of S = sum of costs of

elements S

ACI) = sum of costs of all elements

For any optimal solution c

sum of costs of sets in c > sum ofcosts of
Idea: Cost isn't

much more than

all elements the weight
= A(l)

To get a bound
, we bound the cost of any set in C in terms of weight

SI

extraDeO o o oO
5, : cost = rt

, basically , sum of extra parts is not too much



Let s be
any

set in C with 15) = K

W

EX3 ratio:
. This is smallest or something else covers X with

a smaller ratio .

i. e. Cost < W
.

cost(s) < w(S) ( 1 + E + t +... ta)
-

why ? In(k) = (n(n)
Divide into groups

based

on when it got covered
First iteration

=
K, wase

cost

E i nd

= w(x (1 +...

x+ )↳ i ... isa 2
-
> K2isecost= =maing

... infherthiterationen.

w(s))t +... + h -

K- Ki K-K
, -ke
-

Total cost < W(S) /1 +Et... #)
....

of all elements
-

MK = kth Harmonic number = In (k)

[ wIs) HK >
sum of costs of

> ACI)
/

sets in C
SEC

If
every set has size atmost K

, H : =In (k)

[5w(s] 4k >A

=> ACI) < OPT x HK # In general not a

constant factor approx

K In soHn-approximate algorithm

-
O Edea : only RHS vertices are chosen !

o

-

-
= odegree of degree : 3 I k such groups

E O
on right hand side => kn edges removed .

for i= 1 to n.

O- O

n vt X
#vertices in RHS = IMM = nH .

of degree[ int edges



At each step there is a max degree vertex in RMS !

Note
(So

, analysis is tight. (

-

If we have better than logn-approx for setcover we get an quasi-polynomial Inlogn)

algorithm for any NP-complete problem
not believed to be truely

15/1/24
Vertex Cover

U = Eset of edges in an undirected graphy each vertex has a

weight.

C = E Si /corresponding to vertex vi contains 3
Previous greedy alg .

all edges with Xi as an endpoint
gives logA approx.

↳
every element in U contained in exactly 2 sets

more general case
, every element is contained in almostf sets

, for some constant f

ILP formulation

E 20, 14 for each set Si

Ki = 1 if S: included in set-cover

For every
element e in U

, (VI = 1
,

(C) = m 0 < K

->2x;> 1
LP &, , we

j , eeSj relaxation

drop ci = l min EmWii i

min Em Wie e without changing
Optimum

suppose we have an optimal solution for the LP (polynomial time)

↳ convert fractional values to integers in a suitable way
whose cost is not too

far from LP optimal [Rounding]

set cover instance where every
element is in atmostf sets (For vertex cover, there)

are exactly two

Kitelist--- + Rif 1

Every x : -1 ,
round up to 1

,
others round down to zero.

Gives atvalid solution
,

and cost is multiplied by atmost f.

xi'Efxi
Evicli' < f LP-opt < f . Opt

So
, this is anf approximation. [Iterated rounding is also an idea here]



Use a lower bound on the cost of the optimal solution and find an integer solution

whose cost is not much more than the bound
.

K times

-L
= Algorithmic integer

Lower <
Opt < Opt Integer

solution
bound fractional

A sol
I #

Using dual

of the LP k times

Dual of an LP

Multiply each inequality in original LP by a dual variable corresponding to inequality

and add all the resulting inequalities to get a bound on the cost of

the LP

Ye E corresponding to each inequality
Ye O

YeEas e

Add up all of these.

zm(23)x = Eye
e

eesj
j= 1

-

E wj

Ensure that ye satisfy [Ye <
e

since(j)0
,

-a wjcj > Ee
Note :

Analysis of
Dual Algorithm for set cover

assign non-negative values to elements in U gave costs to elements,

-> For a set S;
in C

,
sum of values of actually a dual solution

elements inSj is atmost the weight of

the set

-> sum of values of all elements is a lower

bound on the optimal fractional solution



Primal Dual Algorithms
Use dual variables to compute a bound on the fractional LP solution and

try to construct an integer solution whose cost is not much more than the dual cost

While there exists an uncovered element e

Initially Ye = 0 for all

-> increase dual value of variable till the elements
,

the set cover

inequality for some set containing it to be empty
becomes tight .

e ↑Je until some dual
-> Include all such sets in the set cover .

inequality becomes light
Repeat till all elements have been covered for some set

Chappen for sets that contain e and

compare cost of integer solution to the dual solution. have minimum weight amongst them)
dual constraint

Cost of
= [ w(s) Ent & Ege) < f Iesolution

for all
obtained

Sin solution solution ↑
u

A particular acoso

Ye appears atmost

f times

Gives an f-approximation

Idea : Bound #sets with Ye FO

9 g. . Clijkstray Ye to then there is only one set containing
Kruskal that e (gives exact solution)

shortest Path

Reverse deletion

↓ set cover obtained by greedy algorithm may contain redundant sets

In reverse order in which the setsmere selected,

delete a set if it does not cover any element

not covered by the others.

Directedgraph with the integer weights to edges and two vertices sit .
Find

min not path from s to to



An s-t cut is a subset of vertices that includes s but not to

edge covers the

↓ cut

u o->V · t
O

S

Elements of universe are s-t cuts
,

sets correspond to edges and an edge
CU , v) covers all cuts s . t . UES

, &S

Assumingthe weights , minut . Set cover > min-wt . path

Dual variables cuts [Ys = We

inequalities for edges.
e covers s

Increase the dual

ST
②G

value for cut [S]

- till it becomes equal
O->
- to min weight edge↓

reduceofitit leaving S

Include all min weight edges leaving s.

Reduce the remaining weight of these edges by min not edge leaving s .

Increase the dual for this cut

- update step in⑭
I

S = ESY U Sallverticeseos
T

dijkstra's algorithm

5
Increase in dual variable will be equal to differenceK T

in distances between vertices at level 2 and level 1
.

↑ and , repeat the procedure.

·
continue till you get an s-t path

->



Applying reverse deletion, delete all redundant edges ,
till you are left with a

-

single path .

->-
>.......Et

Now
, every cut with a non-zero value is covered by exactly one edge in the path.

(dual)

weight of the path = total increase in dual variables

=> optimal fractional solution -> optimal integral

S2
Si.O Hote : A similar analysis works for the min-cost flow&...... primal-dual algorithm .

solution.

Min-not spanning tree

For any partition
of vertices insto two parts S

,
T

& F edge joining a hertex in s to a vertex in T
.

Exercise : Find

Footed spanning tree

Elements to be covered=all such partitions (2"-1) at u in a directed

graph (same algo
- covers all partitions with u

,
y in different

works)
u M

parts. 2"-2 different such partitions

· Increase all dual values of uncovered elements by equal amount8 till some

inequality becomes light .

· Include that set

Iys We
e covers s

If everything inc . by 8
,

increase for each edge is equal. So
, light first for min not

edge. Choose 8, min

Inequality becomes light for all min weight edges.



- · Already increased dual cost by
· I
I

②

&

S
,=umin for all its.

-
Include all edges with min weight

② Contract all connected components
&

O of that to a single vertey .

Consider this as a smaller graph
Effective weight = Woriginal - dual cost

⑳ 1 already
④ ·

vertices assigned

② o

= Noriginal-W1
⑧

·

Pick minimum weight edges again.

(reverse deletion)

Finally, use a tree in each connected component gives a min weight ST .

So
,
Kruskal algorithm = primal dual set cover algorithm . Note:Enmise

deletion doesn't

Counting #min not spanning trees - matter
,

but
n +

-can be done using counting #ST! n , 1243 here it does.

Every cut is covered by atleast two edges
↳ min at 2-edge-connected subgraph) hardn cycle is a min

= general
not 2-edge - connected

Network Design
Problem. [ret : Vazirani]

subgraph)

For some pairs of vertices7 atleast some paths blw those pairs in minut

subgraph
2-approx· algorithm is known

, try primal-dual algorithm.



18/1/24
Integrality Gap

Complete graph will all edges of weight 1

.

= Re > 1 [ setcoverion] K n - K

max

-k)
excut O

-

assign it to each edge ,give Orworst n - 1

a valid fractional sol" with cost = 4
case.

nic
Integer optimal = 1 - 1

So
,

we can say
Kruskal algorithm is 2-approximate using this LP

↓
Integrality gap

of an LP relaxation of an ILP problem
max ratio of etimalintegral sol"

= V

optimal tractional sol

We cannot prove an approximation ratio better than r
,
if the optimal fractional

solution is used as a bound.

#cuts = 2
2 +

- E

excludeset

Every edge covery exactly 22-2 cuts. Assign -2 to every
cut then all (dual)

inequalities become tight => dual cost-ent = 2 which is much less thandele

optimal = 1
.

Hence ,
those algorithms = Kruskal but optimality is yet to be shown

using better LPS
.

↳
Isolating cuts :

⑳ 8 # There aren such cuts
,

increase dual value

one vertex one side,
for each of these.

all others on other side.
T-nclude all min weight
edges.

-of belongs to

2 cults . * Dual cost increases by
Increase value of each isolating cut in n wmist/2 -



Finally tree has only n-1 edges by reverse deletion

·min Reduce the weights of all other edges by

① wmin ,
contract connected components,

repeat

Dual cost of tree = (n-1) Wmin for 1st step .

-

edges in tree

t : (n - 1) Wmin

Excess cost = the

Dacost :

Humin 32 appr t
Idea : Add more constraints to2P which step-

-

eliminate fractional bound. [Generalises
isolating cuts]

sample

O O
K parts

gan igationoO I i

O
1 singleton
n - 1

Ex >Uf partitions
For any partition

of vertices intok parts ,

this fractional-Ele for e with end points in different parts
solution is ruled

out
-K - 1 Ping plane solutions

Illin
tractional

With these constraints
,

the optimal fractional solution = optimal integral solution

and shows optimality of Kruskal algorithm.

1

. Consider partition with all singleton vertices and increase dual variable for

that (NeeE ,
I Y partition [ We]

partition -> e

Every edge crosses this partition ,
so increase this by min weight edge.

All min wt edge light -



↑ Yparti . [le > -1 Dual cost = RHS < 8 ,I
expartition ( so increases dual cost byInwmin

counting umin for every

edge in ST.

Wmin contracted
, weights of all other edges reduced by womin

Easy argument by induction
,

dual cost= weight of minimum ST.

in
&

Remaining olg gives cut of ST for

& remaining components ,
add wmin edges

⑥ - ⑧
to get must for larger graph-

C
Note : This is not possible for 2-edge connected subgraph problem

[ve2 3 Has an integrality - 2-approx algorithm
2 Ecut gap of 2

.

Problem is NP-hard

OEkeEl site : Exe > 2(k1) is actually
2 disjoint ST problem ,

has

ercise : 2-edge connected by deleting edges an efficient algorithm using
until 2-edge connected is 2-approx similar techniques)

But better ratios known
.

In general if constraints for each pair,

set cover formulation is best known .

Feedback Vertex Set NP-hard & > Vertex Cover]
to

Undirected Graph with weights assigned,
vertices.

min not subset of vertices whose removal destroys all cycles

i
.

s . every cycle must contain a vertex from that subset -

xx
-> 20, 13

U = Ecycles in the graphy
Evercycle Exer > 1

Si -> corresponds to a vertex V; C
vEC

it covers all cycles - Vi

min Ewv Pu



Integrality Gap = & (log n) where n = vertices.

Construct an example where optimal integer sol" 4
,

faction sol" f

3 - regular

For all 973 there exists a cubic graph with 29 vertices and no cycles has

length less than g . (g =girth of the graph = length of smallest cycle) #do
:

Show construction

xy E ty Av .

is a feasible solution; cost = Es
Optimal integral sol" contains 29 vertices atleast 7 counting arguement

FY set of size K
,

then -Kvertices don't have a cycle
=> n-K-1 edges left atmost

edgeeted =
nx 3 - (n - K - 1) <

2
# vtx removed

.

=>2 + 1 = 2k

=> K 1
4

Hence integrality gap 24 = =
-(g)

29/9
which is 12 (logn) , n = Avertices -

te : You can get an LP with integrality gap of 2 using additional constraints

Remark : small integrality gap formulation doesn't guarantee an algorithm with that

approx ratio
, but it does turn out that

way
for a lot of cases

Exercise : Construct algorithm attaining (logn) approximation algorithm



Lecture 23/1/24

U = Se, .... In Y Maximum IWP-hard)

each ei has weight wi coverage

C = 25 , S ...

SmY ,
Si EU

FindK subsets inC sit-sum of weights of elements covered is maximized

Greedy algo :

choose the set s .t . sum of weights of newly covered
elements is as large

as possible. Repeat till k sets are
selected

Popt= optimal collection with weight Wopt

/ ** (K sets)

Fatleast one setwt > Wopt <firststea
(i+1)

th step of greedy. Let Wi = not of elements already covered in greedy
There must exist a set st . weight of uncovered elements in that set

-> Wopt-Wi
-

k

=> Wit wi +

W
-

Wopt-Wit I Wopt-Wi -(wWie
E=>

Wopt-Wit ('twoopt-e
reduced by 1-t

=> Wopt-WK = Wopt (1 -1)
WK = Wopt(1 - ) - 5)*) > Wopt(1 - t



Float optimization problem
elements

-

sets ->
A Wig indicates how well the

[ set Si covers dement ej

choose a set S of K rows such that

E max [wijy is maximizede
-

all columns
of j

Previous problem had
wij = 1 iff je Si else wij = 0

,
so is a special case of this.

At ith step choose a row that increases the objective function as much as possible

Exact same arguement as before works
, weget 1-1 approx algorithm using

a greedy approach

f(s) = I
,
max 3w

1

. f(S) is monotone : if S
,
[ S2 ,

f(S) = f(S2)

2 .
Submodular : If A & B and AB then f(AU & <3) - -(A)

=> f (BUSK3) - +(B) Idecreasing marginal return]

MA [ MB

A II is B

[3 +S
+I

<max)
↑

higher increase

by adding row

to A

Wopt is the optimal value , wi is the current value 7 a row such that

it increases the value by We e holds for
any

monotone ,
submodular+

* No approx algo

opt = E4, v2 .
... , YkY known for non

monotone
wi E-Si · This gives an increase of submodular f

d
atleast Wopt-Wi

adding all rows in opt to

Si gives weight Wopf (monotone)



S SUV SUVUV ...
Sur,

o ... U YK
->

Wi ->
-> -Wopt

K steps.

one of these steps must have increased

f" bywowby submodularyaSov,
... up

Vit
-> then

W

Le : For an arbitrary submodular function
,

better than(A-E) approx is NP-hard .

Minimizing submodular f"has a PTIME algorithm , but maximization is hard .

↑Ceary
o
max

in a dim with

Cut-function [Max-cut]
max · many vertices.

f : defined on subset of vertices

-(S) = edges with one end point in S not monotone f()) = f(U) = 0

but is submodular-
other not in S

3

↳
non-neg ative.

E-approx-
if diff < esame ,

Odiff
switch vertly to the other sie,e

keeping all other vertices the

same.

↑

atleast t the edges are in the cut

Cardinality : size of set is at most k

↳ each element has a cost
,

find subset with cost = C having maximum o value

↑

[ knapsack constraint] where f is monotone ,
submodular.

also has a constant

factor approx.

Just greedy doesn't work,

need to compare
two different

solutions.

(Analogous to Knapsack]



Lecture 25/1/24

K-centres

Metric space : Finite set of points with distance

du , v) specified for each pair of points

(1) d(K , v) > O complete graph with
E

(2) d(u, v) = d(v , u) weights dij assigned

13) dLUc) + d(x ,
w) > dIn, ) to edges

choose K points (centres) such that maximum distance of a point from set

of centres is minimized

du,
S) = min d(u , x) radius is the minimum value.

VES

Find S st . IS) <K
,

max min du,) is minimized

VEV RES

-x Dominating set
not in S

Krows ->
SEV sit . every vertex is

-x 1

s . t . max

entry in each
-> I adjacent to some vertex in the

column is -> subset
minimized

⑤ Existence of Dominating set of size

nn K is NO-complete .

Now, dij = 1 if eli ,j) otherwise dij = 2

If we have better than 2-approximation , dominating set would be

solved. ("gap" = 2)

Dominating set of size K iff Fk-centres such that distance is 1 .

so
,

better than 2-approximation is NP-hard.

Algorithm (2-approx)

Initially pick an arbitrary vertex

At each step pick a vertex that is furthest away
from currently selected

till k vertices are selected



Optimal Radius is Ropt

/Rope
o ② O Groups formed in Opt by

X x X associating point withnearest point in S.

distance blu any pair in the same group
is atmost 2 Ropt-

If greedy picks one point from each cluster then distance of every point is atmost 2 Ropt

from greedy centres.

If not ,
it picks 2 points from same cluster. At the moment of picking2nd point ,

its dist <2 Ropt hence
,
all other points are at distance =2 Ropt from currently

selected centres.

Guess the optimum value R

either show there is no solution with cost < R or find a solution with cost

atmost 2R

Pick arbitrary point ,
remove all points
with distance- 2R

· IR Repeat until all points are deleted

If J a solution w) cost [ R then atmost k points will be selected by
this algorithm.

If more are selected -> no solution with cost R

-

Te t U I *
-# [ 0
... R.

max distance] deletes the entire cluster !

& we need to findoptimal radiusy

There is no solution / cost = 1 and 7 a solution with cost < 24 .

Now
, do binary search till length of interval becomes one .

-
-> Ropt & R

*
[ 2 Ropt



weighted K-center

Each vertex has a cost for selecting
We consider only subsets of vertices st . cost < some specified cost C

Sort all edges in non-decreasing order of distances

= bottleneck problems (e .g . min of max

d(e) = die2) ... . = d(ey) weight edge in

STS

k-center problem > Finding smallest index ; st . the graph Gi formed

by the first i edges has dominationset of size = K

4
hardness comes from here.

dominating (sizek)
set

Hi = Gp2 - 4:
2-

-

Two vertices are

adjacent iff Ia o X X X

-
-

path of length = 2

o
-

Independent set in 6%
2

-°between them. - becomes a clique has size at most K

If 4: has a dominating set of size K
, top cannot have an independent

set of size >K
. no vtx can be added Initially MIS has size n

&maximal indep set
to it. H

Find the smallest I such that MTS in 4 :
2

has size = K n - 1
-

so , 4ic has MIS of size > k #
hi- doesn't have

optimal radius C
is atleast costle i) dominating set

E> i must be ther

cost (ei) is a lower bound on optimal solution.
in radius)

-

We use the maximalind set in Gi2 to geta L
Mis is a dominating set

=> I a path of length 2

solution of cost atmostLe in Gi
, by A ineq

Gives a dominating set [2 cost (ei) of that

in 4 : w/ distance <2 Ropt - edge.

Subsets of cost = W

In 4:
2 find a maximal independent set

, replace each vertex by its lowest weight

neighbor if any
->claim : weight of modified set <C if 5 a dominating set

lincluding in Gi with cost = C in4i
itself)



a replaced by1 this .

-

& so
, after modification

, weight W***↓ Now ,
7 a path of length <3 . b/w centre

,
vtX -

=> 3-approximation. Ishmoys]
(but best bound for

(not the best approx.)
this algorithm)

Note : If 7 a dominating set of size =Kin Gi

then all independent sets have size < in Gp2

Lecture 29/1/24

Travelling Salesman Problem (TSP)

Given a metric space , n points with distances
,

find a cycle passing

through all the points having
minimum total distance

[min weight hamiltonian cycle]

A lower bound on this is given by minimum weight spanning
tree

MWST = OPT

But
, this turns out to be a 2-approximation i - e.

OPT < 2 < MUST

Proof : Take the min.wt. Spanning
tree and take vertices in order of of minut spanning

tree. Now
,

because of Aineg

length of cycle= length of pre-order traversal
= 2x MUST

#ask : proof ?
use dinegae

·

·

·

lightness
1

1 Opt-TSP = 2* 5 + 2

MWST = 6.

2

1

I 1
22

So , 2-approx is tight-

2

2
2



Christofide's Algorithm
Add edges to the min wit . Spanning tree to get an eulerian graph. Now,

traverse the Eulerian graph to get a cycle by jumping over already visited edges.

1. Find min ot spanning tree

2 . Look at the subset of vertices with odd degree (say 9)

3. We need to add one edge to each vertex in s to make the graph Eulerian.

So
,
add a perfect matching in the graph formed by S and add it to the tree.

I've allow duplicate edges as well]

4 . We find a minut . perfect matching in the graph formed by S and add it to tree

This gives an Eulerian graph with weight = cot of tree + wit .
of matching

= Cost of the Hamiltonian cycle

Now
,

not of perfect matching <O (since Opt Hamiltonian cycle can be split
into two perfect matchings and choose the

one with lower weight)
=> cot . of tree not of matching < Opt + Gopt =

Opt

=> ACI) 1 x Opt

Hence
,

this gives a -approximation
for TSP.

Ite : Finding an enterian graph is enough since an eulerian tour can be converted to

cycle using a skip of already visited edges/vertices.

&
...

-
E

-shortcut)&..
·

...

Graphical Metric : (best approx .
is 104)

Arbitrary undirected graph with unit weight edges,

dij weight of shortest path from i to j

TSP for graphical metric is equivalent to a closed walk in the graph where each vertex

is visited at least once.



Bottleneck TSP
Hamiltonian

· Find a cycle s .t max weight of an edge in cycle is minimized

· Better than 2-approx not possible ,
else hamiltonian cycle can be reduced

to this

consider kn with wij = 31 ,
(i ,j) + ECG)

2
,

otherwise.

opt = 1 iff 7 a hamiltonian cycle in G.

otherwise opt = 2
.

2 - approximation
d(21) = dez) < . ...

[dem)

↳i = include first i edges in graph .

optimal at smallest i for which Gi has a hamiltonian cycle.
vertex

IfGi has a hamiltonian cycle ,
it must be 2-connected Ican't be disconnected

1

by removing any
one vertex]

2-connectedness can be checked by using DFS in linear time

Now
,

find smallest i for whichGi is 2-connected

=> opt = dei) may or may
not have a hamiltonian cycle.

but previous his definitely don't

Fleischner's Theorem : If 6 is connected then 42 has a hamiltonian cycle.

Hence , Gi contains a hamiltonian cycle ,
and weight of any edge in 4 :

2

= 2 dei) &A inequality Y Int of edge (isj) = length of shortest 2-hop]

Hamiltonian cycle in 4:
2 uses 2-hops in Gi

dei
·di

->

=> 2 dei]
in original graph !

=> deil <Opt 1 2dei)

Hence
,

we get a 2-approximation for bottleneck TSP.



3-approximation

Stop as soon as Gi is connected and for any tree T
,

T3 contains a

Hamiltonian cycle

Steiner Tree

Given a metric space and a subset of points ,
find the min rot. tree that contains

all points in S (may/may not contain other points)

Minimum weight ST with vertices in S is not optimal always.
show that this gives a 2-approximation.

Lecture 31/1/24

Scheduling
· Minimizing lateness

·" tasks ,
each task i has a release time ri and execution time ti ,

deadline

· One machine available ,
one task at a time ,

no task can be interrupted once

started.

Find a schedule (an order of executing tasks) to minimize max lateness over all tasks

Lateness = max (0 , completion time - deadline

· Deciding if 5 a solution of lateness O is itself NP-complete

=> We cannot hope to get an approximation algorithm , since any such algorithm would

have to output a solution of lateness o

So
, we assume that each vi > 0 and di < 0

.(Ensures that objective functions of

2-approximation

Algorithm : Whenever the machine is free and a task is available
,

start executing

any available task

Consider task ; with maximum lateness [in the algorithm]. If it finishes at (j,

then lateness = <j + dj (deadline is -dj) .



Let to be the last time before cj when machine was idle for sometime just before to

Let S be the set of tasks executed in the time from If to c;

=> All tasks inS have release time > ty ,
and the total execution time of

-

-these tasks =<j - Ef (if release before to could have
tf cj started the task earlier

!
)

A ·
- dj idle

=> One of these tasks has to finish at time >(j in any scheduling

if

N <
Lo

idle !

=> Since its deadline 10
,

lateness in any
schedule> (j

Also
,

in
any

schedule
,

the max lateness di (since release o lateness; dj)

=> ACI) = <j + dj = Opt +Opt = 2x Opt (gives a 2-approx algorithm)

Tight example
Vi O E => max lateness = IT + E

di o - T
- T E

d I

· w
-

Ti T E
T

Another version of Scheduling
Completion time = Time at which

execution is

Up ->
Pre-processing

time

-> can happen completed
ti parallel + delivery time

di-
> Post processing

time
- in

Minimize max completion time

· Executing any
available task gives a 2-approximation in this case as well

Ifthe5thjobhasmay completiontimethes after c and opt-dj Hask byone

= A (1) < 2 xopt(F)



· m identical machines

· n tasks with it task having execution task ti

↳ Assign tasks to the machines to minimize the makespan

Makespan = max completion time

of a machine

This is NP-hard even for 2 machines
,

since if makespan = Ei then it would be

same as dividing set into a set into 2 with equal sums.

· Topt > Tmax = max(ti)
3 simple bounds .

· Topt Eti
2-approximation

· Select the tasks in any
order . At it step , assign task ti to the machine

which currently has the least load [current finish time is min]

· If tj is the task that finishes last
,

then the corresponding machine had the

least load before tj was assigned
=> All machines were executing until at least T-tj

=> Topt > E =m+ +ti = T - (m)5

L : Topt > +j)
> T - m Topt

=> Talg 1 In Top

-approx algorithm [LPT : longest processing time first)

order the tasks in non-increasing
order of execution time

t > +2 > ... An

Let tj be the last task to finish .
We can assume that t = th ,

since otherwise

We can delete all tasks after tj ,
which does not change Taly and does not increase

Topt .



Case 1 : En>
3

then
, every

task > Topt/3 => optimal schedule has atmost 2 tasks

per machine. In such cases ,
LPT gives the optimal solution

sort times for each machine in desc .
order for opt solution.

=> LPT schedules firstm largest times ,
followed by rest in next tasks inE ->-

-

3reverse order.
A 2 I can swap to reduce

--- makespan
t 2

Case 2 :In < Topt/3

Topt > E >mn)+ ty > T - (m) Top

=> Targ = /* ) TopE

For large m
,

this is a 4/3-approximation.

For m = 2
, + = E ,

which is attained by Ti = (3 , 3 ,
2

,
2,2)

3 2/ 2 3 3

3 21 2 2 2

Talg = 7 opt = 6

Lecture 1/2/23

Scheduling identical machines

FPTAS if no of machines is fixed
,

not part of input (m)

If execution times are bounded by B
,

Ja (B)n time dp algorithm

f(T, T2 , i) : tree if first i tasks can be scheduled st -
machine i finishes at

time E Ti

fCT, , T2 ,
i) = f (T,

- tit < T 2,
i) V f(T

, -2 - tit > i)

Use this by scaling the execution times &max

objective f "values
modified execution time = /Any scale

y he

using this.

so
,

find optimal to this in polynomial time. Use the same solution for original

task



Every processor has atmost n tasks -> increase in value by atmost nx Tmax

after scaling back

=> we get a (1+ E) Topt Makespan.

If m is part of input ,
no FPTAS possible since the problem is strongly NP-complete

PTAS (poly in n
, exp in Y is ok .) #machines is also part of input

for (1 + 2) - approximation- K is fixed parameter = [t]
Guess an optimum

T

. depending on E

↳ Either find a schedule with completion time (1 + #)T- Idea:

Do bingaT

(or) show there is no solution with completion time = T

Consider jobs with t; = I as small jobs.

↳ ifIa solution with completion time = T
,

then

scheduling small jobs greedily will give a solution

with completion time = T(1+ )

Large jobs ti > I

Each machine can execute almost K large jobs if it completes at time = ↑

-> scale the jobs by Exci . e . ti = [e Iti < T % output

no schedule with1T

possible)
Now

, maximum possible value of any large job
is almost 2

.
at least K

I

We have an instance st .

every task has execution time bluk and K2 ,

each machine executes at most K tasks.

0 I ....

k2
ni = #tasks with execution

time i
,
0 icK2

Hi n ... UK2

The choice for each machine can be described by a similar vector

E. g. 0 1 5 6 ...
E

valid configuration if

total execution time in the

modified instance is1 (2 = LY)
ie. (non ... (2) St . Zinick2



Find minimum number of machines to complete all the jobs.

There are only a constant number of choices for each machine

configurations (since K is constant)

min /No ,
1 ,,....,

" (2) = min (no-mo ,
n

.
-mis .... Mk2 -Mic2) # I

[mo ..... Mk2)

Zimick2

There arewn possible vectors for inputs ,
but possible choices for machine

bounded by a constant

This recurrence gives
-n time algorithm.

Error term< Ex#jobs per machine I

small objects (ti < F1)

We have a solution for large objects withET)1 +t)

-

If greedy filling
of green (small) objects

-

crosses T for all machines -> sum of times T

=> no solution with makespan T is possible .

Now
, amount exceeded by filling greedily

size of last object crossing blueline

+ T(l+ +) · E
Act = T(1 + +)

Now , binary search over T
, we get

initial -> [Eti , Eti + Tmax] Clength ~ Tma

use binary search on this interval to get the approximate solution
:

Time = log (Tmax) ... . ) E so
,

we get Poly but not

-

strongly polynomial algorithm.
#bits in input



&: Max cardinality subset sit

sum of sizes -S
,

sum of weights =In
/reduce from subsetsum

=K)

-> solve the LP
,

nukefractional values·

max Exc ; 5 opt with atmost two tractional

& Sili < S (if three fractional c , augment them to make one of

Ewilizw them integer)
0 = xE

5,
x ,

+ S22 + 53x = S

4 W, * +We <2 + W3 3 = W S.
8

, + S2 82 +5 63=0

Gives an additive
↑ ↑ ↑

&, S
, + wa 82 +3 be

approximation.
Si S2

Sy
=> FS,..-d

> FO
.

but
, running time depends on Change in cost = S

, + 82 +83. liftre v)

#bits in numbers for solving LP
.

cit-ve , flip signs to get
inc in cost)

(not strongly polynomial time)

(4 , + x2 < 2

=> integral solution discards both

=> additive approximation of 1 since ACI) > Opt-2
Opt-1 .

Lecture 5/2

· n tasks
,
it task has release time vi and execution time ti

single machine -> One task at a time

-> Task must be completed once started

[ no pre-emption]

·

Minimizing max finish time is easy
-> keep running any

available task.

Finish time> max over all subsets S of tasks (r(s) + t(s)

r(s) =

min vi , +(5) =E +
iES

If T is the finish time of algo ,
look at the latest time before which the processor

was free
.

Then no task executed after this was released before -> greedy is optimal



· Minimising the average completion time :

& Ci -> Ci = completion time of i

all tasks i

· If no pre-emption is allowed
,

then the problem is NP-hard .

· can be solved easily if pre-emption is allowed

-> scheduled as per min . remaining time

-> Only need to check if a task finishes or a new task is released

At some point ,
ifI had the least remaining time

,
and to was executed,

tz
d
↳ 0 Ezttittz

tip tz
↓ + + tittz (better)

If we first schedule to in these slots and then do t
,

total execution time increases

=> (min remaining time) is optimal

· Consider a non pre-emptive saln in which tasks are executed in the order in which

they complete in the pre-emptive schedule. The task is executed as early as

possible in this order.

Number the tasks 1 to n in the order in which they complete in the soln with pre-emption

If Ci is the completion time here
,

and c
* with pre-emption ,

ci = max((i-1
, vi) + ti

Claim : For every task is (i[24
* => A (I) < &Opt(I)

machine not idle
We know rj = Cj

*

<C
* (because of chosen

r
Ci order of exec. . )

Last release time after Also, c* E* tj G best case scenario

which machine isn't idle Call tasks run without

(jxi) Ci = max((i-, vi) + ti
machine being idle)

Vi = Vj = + je(i * + G
*

= 2c ,*
If vi > Vj

then
4 4

tip ti last release max

-A
time after running time

rj Villast which not idle
release time !



weighted Completion time

min I Wi i

· Finding optimal schedule with pre-emption allowed is also NP-hard

· In this case ,
we formulate a linear program in which the completion times of the

tasks are variables.

Ci are now variables.

ci > ri Vi [can also use ci>Vitti]

We want to impose some ordering on the task sit. completion time of the ith task is

atleast the sum of execution time of the tasks that come before it.

Consider a subset s of tasks
,

tz t2 tz
·

ta G = t
· ⑳ ② · C = +1 + to

C1 22 Cz C4 Cz = ty + t2+ ty

C4 = t1 + te + ty + t4
=> Fiestil · (Eiesti)

+ Liesti
includes +j Xjsi

=> includes titj for

every pair (i , j) ES ,
and ti2 ki

=> Ziegtili /Ziesti)
tili (t)

So
,

we get an LP,

min IwiCi

Ci V ;

Testi(i) At(s)
2

A subset s of tasks < exponentiallymya

· Even though there are exp . inequalities , there are solvers for this since in the dual,

there exists an optimal solution where most of the vars are zero [Ellipsoid method]

· If it is possible to check efficiently whether a given solution satisfies all constraints,

then we pick a subset of inequalities ,
and check if the resulting soln satisfies all constraints.

If we solve the LP finding the optimal civalues (ci* ) , construct the schedule by
executing in order of non-decreasing ci*. Let ci be the completion time in this schedule.



lim : Ci = 3C ;
* Vi

If machine was idle before r,

then r is the release time of some task

no idle time Ci
j = (j

Tasks here must have j = i [cj * [ C
*]

Consider s to be the set of tasks with index :

=>C *
Its => Ejtj Cj

* > # +(s)2 [feasiblept in LP]
jES

-
-

S = first i taskst /S)

=> C
* ) and (i *Vj( : wjEcj

* <ci*

=> Cierj + t(s) Ci
* + 2) :

* = C = 3C :*, hence gives a

3-approx algorithm

Worst Case of Approximation 6/2/24

m tasks questions - approx
- tight example for

p O m
2

- 2 m
2

+ 1 m2+m

weighted case

t m2 1 1
2 .

Is weighted LP exact ?
To TI Te ... Tm+ 1

Are all sol in it

feasible ?
pre-emptive schedule

3. Best bound on

O

I
To

↓
Tz

,
To

,
Te ... TMH

I quality of the approx ?

O m
2

-2
M

2
- 1 m

2 + m
2
+ m + 1

without pre-emption
m
2

- 2 m
2 - 1 To

II I A
free = 2 m2 - 1 2m2+ m - 1

O

Opt

I

O
To

M2
T1 m

+
- ..

m
2

+ M + 1

A(l) - 2m3 + xm2 + Bm + z

opt(I) => m3 + 4 ,
M2 + B ,

m + 4
As m -> 8

, I

- 2



Hence
,

this is the worst case instance for the given algorithm. The optimal feasible

soln must be close to the optimal relaxed soln but ACI) is far.

Quality of bound-instance where optimal feasible soln
. is far from the optimal

relaxed soln
.

quality = Opt(I)/relaxed -Opt (1)

T T + 1 T + T+ 1 = 2 T+ 1

k Opt :

↑
1 ·miniemainingopt TH + # + 1 =3

Hence
, quality of bound > 4/3

Pote :I an example where we get 18/13 in place of 4/3

LP relaxation for weighted scheduling
min I: Wili

Civi Fi

For all subset s : Ziestili #(bS))2

A separation oracle is an algorithm such that given a particular soln c
,

either

shows that it is feasible or outputs a constraint that C violates
.

Ellipsoid = Efficient separation => efficient sol.

oracle of LP .

Given values of ci ,
do they satisfy all inequalities ?

· cir: checked easily
Order the sets st . C, = C < <3 = ... =

n

Consider the sets Si = E1 , 2 ..... i]

laim : If the constraints are satisfied for thesea sets ,
then it implies

that they are satisfied for all sets.

Proof : If there is a set s for which the constraint is violated
,

then - si

for which it is violated.
↑ (to show)

+ici < t + (S)
2



Suppose j is some object in S
,

and we remove ; from S

=> LHS decreases by tj <j ,
RHS decreases by #+(s)

- +(t /5) - tj)
2

= H(t(x2- +(S) - tj2+ 2 HS)tj) = t(2t(s)
- tj)

If decrease in LHS < RHS ,
constraint is still violated .

tic > [(2t(s) - tj) iff (- > +(S) - Etj

iff <j > t(S - Ej3) +t t)

Let I be the largest index in9
.

If C = +(S-513) + Ete we can remove

that index. Repeat until this does not hold.

Then ,

C 1 t(S-509) + ite

↳ show that ifI does not contain all objects from 1 ... I
, adding any

missing object gives a set that still violates the constraint

[Cj = C ,
t(s) - 5 tj > t(s) -tte)

Note :We can't remove all the useless inequalities since we don't known the order

of ci's for opt in general .

Prize Collecting Steiner Tree

Graph -> each edge has a the weight [Cc]

-> each vertex has a penalty , except a specified root r [ITi]

Find a tree containing r that minimizes sum of weights of edges in the tree

+ sum of penalties of vertices not in the tree

FindIti = 0
,
the optimal solution is the min. Wit . Spanning tree.

Steiner tree - Connect a specified set of vertices

↳ for terminals
,

o for others in this problem gives a steiner tree.



Find a tree T S . t -

8/2

Opt will be a tree

& Ce + [ITV is minimized if not prune off cycles !

ecT rf T

Hi -> for each vertex :

Yi = = > Vertex i is in the tree

ce- for each edge e

-S sit - separates o from vi

& de yi 8/S) - set of edges with

eeS(S) exactly one endpoint inS

LP-relaxation

I Cele + [ Mill-yi)
not exact

Formulation.

edges vertices i

I Ye > y,
where I separates

root ~ from vib exp. many
constraints

eff(s)

xe70 , Yi 1

Given a solution 'y' it can be checked efficiently if it satisfies all constraints,

and if not a violated constraint must be found

xe Take values as capacity-
- of edges and check that
-

· Vi
max flow from ~ to v; is

· I
z atleast yi'

-

-

checking feasibility reduces to finding max flow
. (strongly polynomial)

Hence ,
LP can be solved using ellipsoid algorithm

.

In polynomial-time

↳ rounding to get an integer solution

· I

yi E threshold rounding
· O



Threshold rounding :
If yi > 4

,
round it up to 1

otherwise, round it down to 0.

In this case , take ↓ = E3
Include all vertices with Ji in the tree

Penalty = I
,

iti Penaltyin = [
,
π i is

by algorithmic yi < E
soln -[Kill-yi) 2

; Fi

yiC23 yi < 2

Algo penalty/3
Note : Rounding has limited choices for yi. Arrange in 4 order and

threshold choices are only values of y;

A d al M

47 , Y2 33 In

chosen the set of vertices of vertices to include (has a 2-approx

-> finds a steiner tree with r and selected vertices on terminal

S · t 81 2/3 .

In LP solution for any
selected

⑳
· t2

vertex ti and any
cut S separating

↳ r and ti

·+ Exe yip =
eEf(S)

But for Steiner free
,

we need

Multiplying each xe by 3/2 gives a valid Zetge
solution to the LP-relaxation of Steiner tree -

weightedener tree whose cost
=> we can

find a
n

is = 2 x cost of LP-relaxation

i . e . cost of steiner tree =** timesconnection costthere



=> cost of solution is atmost 3 times cost of the LP solution
.

CMST is 2-approx)

Steiner-tree approximation

(Primal-dual method for set cover)

Given a set of terminals in graph ,
find min-cost tree including all of them

· For
any set s

, separates some pair of terminals
,

atleast one edge in SCS)

must be included

mininweo Find a tree whose cost isO -
- (OO

⑧ ..
atmost 2 x cost of dual

Increase dual variable for all

~O .

,

⑧ singleton cuts by an equal

⑧
amount 8 till some edge becomes

tight (constraint)

Algorithm
1
. Increase dual variable by 8 for all EYs = Ce

8/9) = e

singleton cuts

8 = min[WE , way

We is min not edge joining
terminals,

We is min not edge joining
terminal to Non-term.

vJ terminals. -> Assume by induction you
-> Dual cost increases by 8/T can find a tree in the

remaining graph with cost

↳ Contract
any edge that becomes tight

atmost 2 x dual solution

reduce weights of all edges incident with T by S I
i. e . in each step , increase

% in cost = 2 x increase in dual

· / Increase weight of all

edges incident with T in tree
contracted

by 8 and add cost of

contracted edge.



The tree obtained has only terminals as leaf vertices.

In
any tree ifT < V including all leaves

,
then edges incident with T

is almost 21T1 -2 leasy to see)

Hence
, increase in cost = 21T1 8 , showing the 2-approximation.

(primal) ↳
C

+S - Per pair we get + 8 ,

So for 171-1 pairs (upon contracting edges with one

↳ &mo
non-term. end in arbitrary order). we get atmost 28(T) increase.

#

*
*

Facility location
12/2/24

· Set F of facilities

· Set D of clients

· Cost fi of opening a facility
·Cost Cij for connecting client ; to facility :

Find a subset of facilities and connect the client to the nearest open facility to

minimize total cost

i . e . We need min Eiesfit E min,
SCF ↑

-

If Cij are arbitrary then set cover can be reduced to this

Greedy : Select a facility i which minimizes

min

subsets softfises
/is -> open facility ; and connecta

over all non-empty all elements of S to facility i

-> Then remove s from clients and continue

Thiss can be found by sorting cij



Analysis - For any facility: and subset s of clients,

O fitIjes'ij sum of costs assigned [same arguement

"Co
to elements in S as set cover]

-

· Histfi so first dem covered -> cost assigned <avg ·
cost

Metric Facility Problem

· Facilities and clients are points in a metric space
·Connection cost is the distance between points

61

is Caja Cist Cizja * Ciese

ja
Iz

LP-Formulation

-i -> for facility i
, Yi = 1 iff fi is open

j -> client j is connected to facility i

min E : Fifi + Eij Cijklij

=. ij = t j = each client connected to 1 facility

yi-dij -, 0 Nij If client ; connected to fi,

fi is open .

clij , yi E 20
, 13 E relaxation 0

, yo
is just

In dual
,

for each client we have a variable vj (unconstrained since constraint

is an equality) and Wij, O

Dual LP-opt = LP opt .

Dual :

If a variable that is O has
-

max EjeD Vj ↑ re value in LP-opt then corresponding
fi > IjeD Wij Hi inequality in the dual must be

-

tight [complementary slackness]

Vj - Wij = (ij Hisj

Wij O



Consider Optimal IP soln
. to the facility location problem. Then if elij > 0

, 1312/24

then we have vj -Wij = Cij
Vertex with For facilities with xij > 0

,
y ,

o

(
O

min V Pick facilities with min fi (say fi)
O& : is t

(say v , )
Dual opening cost of facilities in F

F -

sum

= Ifiyi 11 Eyi > F2 Edit

-

Yk 8
= f

when <lij > 0
, Vj = Cij + Wij Cij

fa Connect vI to 1
and also connect all

O VI

O
clients with <(ij > 0 to fi (K+j > 0)

fi or (to +1)
O

Algorithm
"2

·While I an unconnected client j , pick the client

with min value of V

· Let F be the set of facilities i such that vij > 0

in the optimal solution

· Pick a facility m in F with min value of fi

· Connect all clients (unconnected) to the facility m

such that lik > O for some i in F

· Repeat this.

Note : After this
, no unconnected clients have a non-zero

value to
any facility in F.

laim : At each step ,
the total cost incurred in opening the facility and

connecting the clients to it is atmost 4 IV values of clients connected.

If : The dual cost of opening facilities in F fi > 0 only if xij > 0

for some facility is given clientj

(F-Sikijob) ZieF fili > fmEyifm [vij
= fr Im covers all clients coveredye

F , so only that is counted .

In this case
,

the total cost of opening the facility fo is atmost Rick Fifi

=> Total cost of
opening

the facilities = I
: fil : <LP-opt



By complementary slackness , (lij > 0 -> Vj-Wij = (ij => V, Cij /since , wij0)

non-zero. Vj (lowest v

Em unconnected)
F

i fi

Eilig
n O

· >ob
non-zero

-

K (lik > 0 , but mk is not nec . Of

Connection cost of connecting ; to m = Vj ((ij =Vj)
cost of connecting k to m = Cmj + (ij + Lik [metric

=
Vj + Vj + Vk

= 3VK (Vj was lowest cost)

=> I (connection costs) = 3 E VK (each va cost is counted once due
to cover by facilities)

- 3 Opt (1) (dual opt is [VK)

=> A CI) = connection cost + Opening Cost

[ 3 Opt (E) + Opt (1)

=> A (I) = 40pt(F)

Primal-dual Algorithm
keep increasing the v values for some subset of clients till some dual

inequality becomes tight I keep increasing all non-tight v together]

For each facility is [j Wij =fi , j
- Wij = Cij [max [vj Y

start with all Vi = 0
, Wij = 0

Assumeme have a current dual solution. Define a facility i to be a neighbor
of client ; if Vj<, Ci. Also

,
a facility i contributes to client ; if Wij O.

If facility i contributes to j ,
then it is a neighbor of j (by construction)

Since we increase wij only when the inequality becomes tight



The first iteration will stop when the dual inequality becomes tight
for some facility

For a tight facility ,
the value ofi cannot

m

↳Tight( be increased for
any neighbor. (Wij)

There are 2 possibilities when we have to stop

increasing the dual (v) :

stop increasingtheeecient E 1

. If some client becomes a neighbor of a light facility (vj = (ij)

stop increasing the dual 12. Some new facility becomes right
for all neighbors of this facility

claim : I an integer solution whose cost is atmost 3 times the cost of the dual solution.

St all clients for which dual variable is being increased 17/2

T = set of all facilities for which dual inequality becomes tight

At the end
, every client will be a neighbour of some facility that is light

↳ (if 4j < Cij for all i,
(some facility in TC

increasex; further)

For
any

fifT ,
fi = I wij = [ vj - Cij

jeNCti) jEN(fi)

Suppose we connect all clients in N(fi) to fic

cost = fi + E <j = Z Vj
If N1 fi) are disjoint , we get exactly

4
sof opening fi) jEN(fi) jtN(fi) & xj

= ZVj = dual cost

Construction of solution : (Intuition)
jEN(fi) jED

=> primal cost

corresponds to optimal
· select any tight facility

and open it
primal .

· Connect all neighbors of that facility to it (vj (i)
· If one of these neighbors also has a non-zero wij value for some other

facility ,
connect all neighbors of that facility to this

le don't pick2 facilities which have a non-zero contribution to 2 clients]

=> don't select 72
,

connect C4 and cy to f1F iis Note : If these are no clients with > 1 neighbors, theon

the algorithm gives the optimum value. (why ?)



Note : We can't use the same argument with the optimal 24 dual solution,

since we can't argue "KEY in that case . Forderingmatters]

· Consider a graph on T in which two are adjacent if some client has non-zero

value of mij in both facilities

Let I be any maximal independent set in this graph. Open all facilities in T'.

Any client that is a neighbor of
any facility in -" -> connect it to any one of them

For clients that are not in T -> Let i be the facility that caused

the dual variable ; to stop increasing

If i is not inT
, 7 a client k that has theW values to i

and some facility in

T'[sayu
-

w
>

0

Cmj = Cij + Lik + CmK
j ·

~ > 0 0 KE common Cij [Vj [they are neighbors]
client

for w >0
Cik VK

m
W > 0 in T . CmK = Yk

Also, YK [Vi because j was removed from S because i became tightj

Wik > 0 - K can't become neighbor of f: after it becomes tight -

vj can't increase because fi became tight. Hence
, "K = V;

[by construction]

So K cannot increase after i became tight -> k was removed either before or

when I became tight

=> YK didn't increase after ; stopped increasing

Hence, Cmj -

> 34

Total cost = Exc , (fitEdi) = [ (IVj + 3.Eat
fitto direct

Conn .

= 32xj = 30pt(I)



Scheduling Related Parallel Machines [Ref : Vazirani 19/2

·a independent tasks

· m machines

· For every task i and machine j , tij is the time taken by task i on machine j
· Find a schedule that minimizes the max completion time -> assigning tasks

to machines

xij = 51 , task i assigned to machine ;
O

, otherwise

ILP Formulation

min t The problem in LP relaxation is that

& Kijtij Et machine j
it can distribute large tasks over all

machines so the LP-opt/opt
E
. xij

= 1 H task i
, assign to can be very small

exactly 1 machine

Clij t 30, 14

&g : One task
, i machines

, taj = m +j Getting an m-approximate
is easy-schedule

Optimal integral time = m
each task to the

Optimal relaxed, 1 = h , jtj E 1 #j fastest machine.

↳

Opt relaxed = 1

Using Binary Search : Guess a value T for the optimal -

Construct an algorithm that either shows that there is no solution with completion

time < T or finds one with completion time atmost IT
.

Since Opt (1) + [ Iming tij
,
I : minj tij] ,

we can perform a binary search
m ↑ using this ↓

Total time > NY - opt > NY /m
a possible

assignment will give
Modified LP Formulation [modelling as LP feasibility problem] m - approximation

Whenever tij > T - do not allow that assignment
E

, Clij = 1 # task i
Hi ,j :lij O

& cijtij < T machine j
↑i : tij <T



claim : If this LP has a feasible solution
,

then we can find an assignment with

completion time atmost IT
,

and if not , there is no solution with

completion time <
T

.

If there is a feasible solution
,

there is also a basic feasible soln which is obtained

by selecting a set of constraints that are light and solving the corresponding
linear system of equations

suppose there arer valid pairs (i . j) such that tijT
# variables = U

# constraints = m + n + V

since there are r variables

↑
If there exists a feasible solution obtained by choosing atmostof these inequalities
to be tight=> in any such set

, atleast -(n + m) inequalities must be

of the form <xij = 0

=> I a feasible soln in which atmost (mth) variables are non-zero .

7
We are looking
at rounding

"Corner") this feasible

In the basic feasible soln
,

a task i is tractionally assigned to machine
-

solution
-- 64

if o < clij < 1
,

and integrally assigned otherwise .

"corner"

If a task is fractionally assigned to one machine
,

then it must be fractionally
assigned to atleast 2 machines

=> If there are k tractionally assigned tasks and (n-K) integrally assigned
tasks

, non-zero hij is atleast (n+ k) = 2K + n- K
-

# non-zero hij #non-zero atleast integral
=> n + k = n + m " => KEm 2 chij > 0

per fractional task

=> The fractionally assigned tasks can be integrally to machines such that

every machines is assigned atmost one task.

How to
So we can round some of the fractional values to 1 3 . t .

every machine gets 3 do this ?atmost one rounded (to 1) value
·

d

=> Each machine's execution time increases by atmost T Next
page

-

=> Actual completion time < 2T Hij , tijT .

and LP ensures [dijtij <T Yj machine

i



Construct a graph with tasks
,

machines as edges where (ti , mj) - E

iff (lij > O
atmost ntm <j are non-zero. (Rounding
e Algorithm)=> Has (n+ m) vertices

,
atmost (n+ m) edges

For tasks which are integrally assigned , just do that assignment and remove
Machines

those tasks from the graph. Tasks

*

②

CO

=> New graph also has no of edges no of vertices
t;d

xij > O

↳

mj
&

* O

If the new graph has a matching ,
then we get the required assignment. Hij = 1 *

If a machine has degree 1
, remove that and the task adjacent to it.

Now we have a graph with degi- 2

In
every connected component of this graph ,

we have IE1 < IVI

=> Each connected component is an even cycle that has a perfect matching Pickalternate
-

has min #edges given connected , IE) = (1 .

f

Claim : Any connected component of the graph has atmost as many 2012

edges as vertices

Proof : Choose a feasible solution with as few fractionally assigned as possible

I me just need a basic feasible solution]

Suppose we havea vertices and (n +1) edges => There are atleast 2 cycles
The component has one of the following structures -> Cases (a) , (b)

(a) + 8 ,

A
If A is a task

,
for the new solution

B
+ 8

+ 3

to be feasible
,

we need 8
,
+ S2 + 83 = 0

.

C Also
, in this case ,

B is a machine and C is a

1282
task= > For ItijijIT ,

BC needs to change
c

, 8 ,

X C38z by - 8
, AB

FcB

We can similarly propogate the changes along the edges.

If X is a task= > c
,

8
,

+ 22 82 + C 83 = 0

If X is a machine => Ej 4 , 6+ taj (2f2 + tj3 53 = 0

In either case
,

we have 2 equations in 3 vars and this has a solution. (other than 10,
0

, 03)



Also, C-8, -S2 ,
- 83) also satisfies this

=> There is a solution that as a smaller no . of tractional edges.

(b)

Si S2
Here also

, we can propogate and get a solution.

⑬ O

+ C8, ·se iss
,

383
#ask ?

Vertex Cover

min E Will

xi + xj > 1 (i,j) = E

xi0

Any basic feasible solution to this LP has only 20 , t , 13 as values for i's It-integrate
If any ci has weight be (0 , E) , then

every neighborhood will have weight (1-S)

V

· > 1 - S
increasing # Tight constraints

.

O

↑
<8 · 1-8

Atleast one has (1-8)
,

else we can reduce 8
.

Still some Pff(V)

Look at connected component with vertices having 8 and 1-8
is tight (

- E
⑳

+ E

Increasing left side by -E and right

· ②
side by + E is still feasible .

Also
,

for small enough E , we can

· · increase the left byE and decrease

② ⑳ the right by E

1 - S => The soln is not basic
.

o < 8t (since more constraints are becoming

I no internal edges tight)
Since weight < z)



Solving the LP using max-flow #Key : Opt is symmetric ,
so Y12 = 121 = Je

Us

·

Y

&

⑧

If (i,j) are adjacent
vali/2

- ·

"2
&

·

U2 >
Wi /2

connect (v , val and / 12 , Mi)
-

7 -

⑳

-

->
· W2/2 : Welz

~

Wn/2 -&
- & Ye [

min/2 d ↑
↑

·

In
·

flow
,

capacity
un

Optimal LP soln = Value of max-flow -> ↓- integer if Wi are integers > ford
fulkerson

with 0 . 5
LP for max flow => max [Je as units.

= Ye
-
> Wy HVEV dualofverye

ee 8(v) &
Ye > 0

=> They have the same optimal value

Rounding : [For bipartite graphs

In the tractional solution first pick all vertices with integer cost. For the

half integral weights ,

·
·

72 Total wit .
= Zali

12. O

· O
=> Pick all vertices on the side with smaller weight

· · => gives the optimal soln
.

For 3-colorable graphs ,

Picking 2 least
weight sided

-

E t Integral cost wi

=> Atmost times the tractional cost

Fractional [pick the 2 least weight sides]
opt =

Ewi
1
2



· For bipartite graphs ,

Optimal tractional soln = integral soln for an arbitrary
weight function

The converse is also true
, since if we have an odd cycle

12
=> It = I but rounded is atleast 3

12. · "2

·
2"2

· Given a weight function
,

is it true that optimal integral I don't know

-> optimal fractional for that weight function ?
the answer

· Optimal integral vertex cover > Optimal fractional vertex cover

[NP-complete] = Optimal fractional matching
n

> Optimal integral matching [Poly time]
M

check if the two are equal
to see if the solution is optimal.

Midsem Question Pattern

1

. One set cover= > Needs LP

2. Another knapsack kind of => probably DP



Lecture & Midsem Discussion ( 6/3/24

& o Ce LP formulation LP dual

min Z will ; max eye

* t : Ye
, tez + Key > A #2 : ExtYz We

O It > 0

First
,

remove all edges that are not part of
any triangle

case 1 : He <e) O in the optimal primal soln
.

Because of compl .
slackness

,
He

, Text it = Me

=> Jewe = Ec Izzet = 3 Iyz

=> dual opt =

Enee

Since complement of bipartite graph from (a) has weight at most Ie
=>e-approximation

Lase2 : Je : He = 0

=> x = tor x21x1 x2 2

Round that se -> 1 , remove the edge
O

=> In remaining graph ,
set of se still feasible

=> Opt (new) <

Opt-he
e

removed edge
Induction hypothes is

A (F new) <2 Opt (new) 1 2 Opt- we

Now , adding edge back

=> A Cl) [ 2 xOpt ↳



Lecture Randomization 10/3/24

Max-SAT

Given o clauses ina boolean variables ,
each clause has a weight.

Find an assignment that maximises sum of weights of clauses that are satisfied.

1 .
Each clause contains atleast 1 literal

2. Does not contain literal and its complement
3. No literal is repeated

Goal : Find a solution whose expected cost is close to the optimum.

We pick any assignment uniformly at random

Let Xi denote the random variable that takes value 1 if clause ei

is satisfied , O otherwise

Cost is also a random variable : I
,

WiXi

=> [cost] = I Ni [Xi] = I
=

Ni Pr(Ci is satisfied)

= ZE
, Wi(1 - ()Kil)

and
, I -(b) is

=> [cost] =

Ei ↑

=> [Wi > max-cost >
Elost] > Ewi , i . e ., gives a -appro

Tin expectation]
Devandomization (method of conditional expectations)

[cost] = t (#[cost/X +
=13 + [cost(X ,

=0])
(here Xi = 1 denotes value of

= max (E[CIX+
= 1]

,
E[CIX =0]) X1 set to 1

.

Select Xi = 1 or 0 It. E[CIXi] is higher and continue.

solution obtained has cost= Ei hence
, gives a -approximation-



Relabel the literals so that weight of a clause with a single negative literal

I t of clause with a single positive literal . [IN(πi)[(N(Xi) # 13
if X i c C or Xi E C

suppose no clauses with single negative literal · Suppose we set a variable to be

true with p-E. What is the probability that a clause is satisfied ?

For a clause with single literal (because it is +ve) = P

For clauses with a the literals
,

b -ve literals

Pr (C is satisfied) = 1 - (1 - p7apb [Px E
>
- 1 - patb
=> 1 - p2

choose
p S . t. p = 1-P2 , p = A

ifXitC, Fide , Pr (Xi Sat = i e

j > 1 - p2
clauses Xi , Fi -E

,
cost =

p Wa + (1 -4) W2 *

=> l[cost] = 1
Zwi => Better than E-approximation.

This can be derandomized in the same way as the previous algorithm.

Max-Bipartite Subgraph [MAX-CUT]

Algorithm : Put a vertex in A or B with equal probability , include all edges between A , B

Expected cost = Ewi
Derandomization

Place X1 in set which gives higher # [CIX1]
.



A - -e) Approximation (using Randomized Rounding)
1
. Interpret relaxed LP soln . as the probability that the variable takes value 1

.

2. Compare expected cost with the optimal LP-cost

The ILP formulation of MAX-SAT is

yi- > 1 if i is true

=j -> 1 if clause j is satisfied

max [ wj Zj

[ yi + 5 (1 - yi) > Ej #clausej
it Pj itN

relax.
=>j , y i t [0 , 13 -> 0 = zj , yi El

Consider the optimal soln . y:*, 2 .
*

to this LP-

J

LP-cost = Ej Wjzj

Rounding scheme : set yi to 1 with prob . y
* (independently

Expected cost after rounding = [jj Pr (clause ; satisfied)

Pr (clause ; not satisfied) = /T (1 -y i
*) I

i - Pj i EN,
Yi

*

literals=
[iep

,
(l-yi) *

+ Eien
;

Y ;*
j < no . of

ej

= = -

#
*

-

Inj + -

+ -

* e

Need to show that Pr (clause is satisfied) > (z)
* > C x Opt-Lp cost

Since , 1 - 11 -

-*
j is concave for 0 = E

* E1
, using jensen a

1 - (1 -

z
* )bj + ( - zj)(0) + zj)1 - 1 - )l
-(A -

E)zj *

> (1 -

- Ejwjzj
*

> ( - E) (p- opt = f - E) Opt .



If we take max of solutions obtained by setting each variable true with prob. E

by rounding the LP
.

max (E, E2) *
2

expected value of E = [wj(1 -(9) = Zwj zj
* (1 - ()(i)

Expected value of E2E [wj (1-(1 --)(i) zj
*

=>EF2x [tkjz
* (2 - ( - -)4 - (b) i

=>
Lp-opt (ljEIN)

Gives a -approximation algorithm .

The same bound can be obtained by rounding the solution differently
Round a variable y:

*
to 1 with prob . fly ;

*)

choosef sit

-** f(y) = 48 "[Nyttal] ,
1 - 4 - 1 43 -1]

47

itn)
43.*

Pr(clause; not satisfied) = Miep
;
(1-fly:* Tien; f(yi

*) < Tiep
,

4 - 3:**

= ↑(iep; Yi
*

+ Zien;
(- y

*)
14

- zj
*

Pr (clause ; satisfied) = 1-4-E)
*

> * Zj
* (jensen

We can show that Pr (clause j is satisfied) Ej
*

=> Expected cost=> Ex Opt-Lp

Note :

Integrality gap of this is 3/4 , so this is the best possible approximation

using this LP .

Example for 31 : < , Cl , V , Mice
, i Viz

~t = 1 per clause

(LP opt = 3

2 opt = 4 (y*= y
*

= E)


