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Abstract—This work builds upon the foundations of
Stylized Neural Painting [7] by introducing a lightweight
model with fewer parameters and optimizing code through
vectorization, aiming to expedite the process of style trans-
fer. Additional experiments were conducted by augmenting
the code with a novel term in the loss function, inspired
by the Laplacian loss proposed in [5]. Further we have
extended our model for style transfer on videos.

Index Terms—Neural Networks, Deep Learning, Image
Processing, Style Transfer, Convolutional Neural Networks
(CNN), Feature Extraction, Artistic Style, Image Synthesis

I. INTRODUCTION

Artistic capabilities have been traditionally viewed
as belonging exclusively to humans. However, recent
progress has shown that this is not the case. Previously,
progress has been made in generating art using a pixel-
by-pixel approach [3] [6], or a continuous optimization
process. However, neither of these seem to capture the
art of brushstrokes seen in popular oil paintings. A
breakthrough paper in this respect was published recently
[7] which showed an automatic image-to-painting trans-
lation method that generates vivid and realistic paintings
with controllable styles. This method was referred to
as “Stylized Neural Painter”. Instead of manipulating
pixels, this method generated brush strokes just like a
human painter would
Recently, there was also reported success [5] in using
the Laplacian loss in neural style transfer which steers
the synthesized image towards having similar low-level
structures as the content image, while being flexible to
allow the image to be rendered in the new style. The
third frontier we shall focus on is neural style transfer
for videos. Recently progress has been made on this front
by [2].
Our work aims to combine work from these frontiers.
In order to achieve this, we introduce the laplacian loss
function in the framework proposed by [7], in order to
improve the peak signal to noise ratio (PSNR) for neural
style transfer on the stylized neural painted images.

Moreover, we run the Stylized neural painter frame by
frame in order to generated transformed videos. We
observe that in practice that this simplistic approach
works when working on videos lasting a few seconds.
Further, we propose a more succint model, which renders
images faster than the original model.

II. PRELIMINARIES

In this report, we mainly build upon the works of [5]
and [7]. So, in order to understand our code, we need
some mathematics background to motivate the changes
we made in the code of [5]. In this section, we enlist the
mathematical framework of the above mentioned papers.

A. Stylized Neural Painting

Fig. 1: Network architecture taken from [7]. We start
from an empty canvas and then render stroke-by-stroke
with soft blending. We use gradient descent to find a set
of “optimal” stroke parameters that minimize the loss.
Here black arrow lines mean forward propagation and
red ones mean back-propagation of the gradient

The overview of the method used by [7] is depicted in
fig. 1. In each drawing step t, a trained neural renderer
G takes in a set of stroke parameters xt (e.g., shape,
color, transparency, and texture), and produces a stroke
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foreground st and an alpha matte αt. We then use soft
blending to mix the canvas, the foreground, and alpha
matte at each step t and make sure the entire rendering
pipeline is differentiable. The soft blending is defined as
follows,

ht+1 = αtst + (1− αt)ht;

where (st, αt) = G(xt). The stroke parameters are
now gathered from all the T steps and optimize them
by searching within the stroke parameter space. The
searching is conducted under a self-supervised manner,
i.e., it is enforced that the final rendered output hT
similar to a reference image ĥ :

hT = ft=1,T (x̄)

where ft=1,T (.) is a recursive mapping from stroke
parameters to the rendered canvas. x̄ = [x1, · · · , xT ]
are the collection of stroke parameters at t = 1, · · · , T
drawing steps
Suppose L represents a loss function that measures the
similarity between the canvas hT and the reference ĥ,
we optimize all the input strokes x̄ at their parameter
space and minimize the facial similarity loss L : x̄* =
argminx̄ L(hT , ĥ). We use gradient descent to update
the strokes as follows:

x̄← x̄− µ
∂L(hT , ĥ)

∂x̄

B. Disentangle neural rendering

Fig. 2: [7] designs a dual-pathway neural renderer which
consists of a shading network Gs and a rasterization
network Gr. This renderer takes in a group of stroke
parameters (color, shape, and transparency) and produces
the rasterized foreground map and alpha matte.

Previous renderers suffered from coupling of shape
and color representations when testing with more com-
plex rendering settings like color transitions and stroke
textures. This problem was solved by zou et. al. using
the architecture depicted in Fig. 2 which employs a

dual pathway neural renderer that disentangles color and
shape through the rendering pipeline. This is achieved
using a shading network Gs and a rasterisation network
Gr. The parameters of a stroke x are divided into three
groups: color, shape, and transparency. Gs is built as
a stack of several transposed convolution layers, which
takes in both the color and shape parameters and gener-
ates strokes with faithful foreground color. They design
the Gr as a positional encoder + a pixel decoder, which
simply ignores the color but generates stroke silhouette
with a clear shape boundary. We finally generate the
output stroke foregrounds by masking the color map with
the stroke silhouette and generate the final alpha matte α
by rescaling the silhouette using the input alpha value.
This neural renderer is trained with standard l2 pixel
regression losses on both the rendered stroke foreground
and the alpha matte. During the training, the following
objective function is minimized :

L(x) = Ex∼u(x){∥ŝ− s∥22 + ∥α̂− α∥22}

where ŝ and α̂ are the ground truth foreground and
alpha matte rendered by the graphic engine. x ∼ u(x)
are stroke parameters randomly sampled within their
parameter space.

C. Laplacian-Steered Neural Style Transfer

The Laplacian operator ∆ of a function f is the sum
of all unmixed second partial derivatives:

∆f =
∑
i

∂2f

∂x2i

The Laplacian filter is the discrete approximation to the
two dimensional Laplacian operator, given by

D =

 0 −1 0
−1 4 −1
0 −1 0


The Laplacian matrix of an image x is obtained by

convolving the image with D, denoted by D(x). At re-
gions where adjacent pixel values change drastically, the
convolution will produce a response of high magnitude,
regardless of the direction of the change. In regions
where the change is flat, the response is zero. Hence
the Laplacian operator is widely used for edge detection
and extraction of detail structures in an image

1) Laplacian Loss and objecive: Given two images
xc and x

′
we can use a Laplacian loss Llap to measure

the difference between their Laplacian

Llap =
∑
ij

(
D(xc)−D(x

′
)
)2

ij
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In order to force the stylized image to possess similar
detail structures as the content image, we can augment
the style transfer objective with the Laplacian loss Llap
of x

′
and xc :

Fig. 3: Network Architecture of Lapstyle [5]. Black and
red lines are forward and backward passes, respectively.
Dashed lines indicate that there are unshown intermedi-
ate layers.

Ltotal = α · Lcontent + β · Lstyle + γ · Llap

In order to implement this, the neural network Lap-
style given in [5] uses the above linear combination given
as 3

D. Pixel Loss and zero gradients

This section describes the zero gradient problem, that
is, why l1 loss is not sufficient to capture our problem.
The below figures are taken from [7].

Fig. 4: A simple example to explain why pixel-wise
loss L may have the zero-gradient problem (∂L/∂s =
0) during the stroke update.

Suppose we have a square shaped stroke A and we
want it to converge to a target location B. Now, the stoke
parameters allow you to shift the stroke horizontally.
Now, since there is no overlap between the target and
the source strokes, the gradient corresponding to that
parameter becomes zero. This phenomenon has been
depicted in fig. 6. In order to rectify this issue, we need
to define a transportation metric instead of a pixel-wise
distance metric as shown in fig. 5.

Fig. 5: A comparison between the pixel-wise distance
and the transportation distance

If instead, the loss is defined as the amount of trans-
portation effort, as shown in fig. 4, we see that the issue
is fixed.

Fig. 6: A comparison between the pixel loss (1st row)
and transportation loss (2nd row) on “pushing” a stroke
from its initial state to its target. Using the proposed
transportation loss, the stroke nicely converged to the
target. As a comparison, the pixel loss fails to converge
due to the zero-gradient problem in its position and scale.

We define the minimum transportation efforts, i.e.,
the Wasserstein distance, as an effective measure of
similarity loss between the canvas and the reference
image.
Given a rendered canvas h and a reference image ĥ,
we define their normalized pixel values ph and p̂h as
their probabilistic marginal functions. Here we omit the
subscript T for simplicity. We define P ∈ Rn×n

+ as the
joint probability matrix whose (i, j)-th element denotes
the joint probability of the i-th pixel in h and j-th pixel
in ĥ, where n is the number of pixels in the image. We let
D be the cost matrix whose (i, j)-th element denotes the
Euclidean distance between the i-th pixel’s location in h
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and j-th pixel’s location in ĥ. Thus, the matrix D list all
the labor costs of moving a “unit pixel mass” from one
position in h to another one in ĥ. In the discrete case,
the classic optimal transport distance can be written as
a linear optimization problem

min
P∈U

DTP

where U := {P ∈ Rn×n
+ s.t. P1n = ph, P

T 1n = p̂h}
In [7], a smoothed version of the above constrained
optimization problem called the sinkhorn distance is
employed which has several nice properties including
differentiability, and an entropic regularization term. Let
Lot be the sinkhorn distance defined as the following.

Lot(h, ĥ) := DT P̃λ

P̃λ = argmin
P∈U

DTP − 1

λ
E(P )

where E(P ) := −
∑n

i,j=1 Pi,j logPi,j , and the optimized
transport loss can be defined as

L = β1Ll1 + β2Lot

III. MODIFICATIONS

A. Laplacian
In recent work by Li [5], the idea of laplacian steered

neural style transfer was explored. In order to improve
the structural coherence, the paper argues that the content
loss reduces the search space too much, whereas the
laplacian is quite flexible and can be added to the loss
without disrupting the existing structure. We test the
same theory with this modification, where we assign
the laplacian loss term a fixed weight, so that the loss
function now becomes,

Ltotal = Lcontent + αLl1 + βLstyle + γLlap + δLot

that is a linear combination of content, style, laplacian
and sinkhorn loss functions, where the coefficient of the
laplacian loss is fixed. This laplacian loss is simply a
sum of the laplacian losses with respect to a selection
of layers corresponding to the neural network generating
the deep representation of the image (vgg-16) in our case.
Note that we are not using laplacian loss in the rendering
of the image, but in order to apply a style to the rendered
image.

B. Lightweight Renderer
Drawing from the renderer given in the paper, we

designed our own renderer with both the shader and
the rasterizer network. We greatly reduced the number
of parameters from 18.1 million to 5.4 million. Our

architecture for the networks is shown below. In the
config column entries of the form c×w×w/s represents
c filters of size w × w being applied with stride s, the
output is height× width.

Table 1: Details of our shading network.

Layer Config Out size
C1 Deconv + BN + ReLU 512× 4× 4/1 4× 4× 512
C2 Deconv + BN + ReLU 512× 4× 4/4 16× 16× 256
C3 Deconv + BN + ReLU 256× 4× 4/4 64× 64× 256
C4 Deconv + BN + ReLU 128× 4× 4/2 128× 128× 6

Table 2: Details of our rasterization network.

Layer Config Out size
F1 Full-connected + ReLU 512 512
F4 Full-connected + ReLU 4096 4096
V1 View − 16× 16× 16
C1 Conv + ReLU 32× 3× 3/1 16× 16× 32
C2 Conv + Shuffle 32× 3× 3/2 32× 32× 8
C3 Conv + ReLU 16× 3× 3/1 32× 32× 16
C4 Conv + Shuffle 16× 3× 3/2 64× 64× 4
C5 Conv + ReLU 8× 3× 3/1 64× 64× 8
C6 Conv + Shuffle 4× 3× 3/2 128× 128× 1

Note that in contrast, to the network given in [7] our
network removes two fully connected layers F2 and F3
(according to [7] in the rasterizer) and removes C5 and
C6 layers in the shader and modify C1 to C4. However,
our result of the PSNR and G loss (definitions of PSNR
and G loss elaborated in IV) show that our lightweight
network with performs as good as their network.

C. Stylized neural painting for videos
The idea of neural style transfer for videos has been

explored in [2], and other such papers. So it is natural
to expect such an extension for this new kind of style
transfer, where an image can be converted into its painted
counterpart. In order to implement this, we perform the
following procedure,

1) Given in input video, we use the opencv library
to break the video into frames, and consider every
other frame for the computation of the transformed
frames to be efficient. So, the resultant video has
half the initial frames, that is fps (frames per
second) drops by half.

2) For each frame, we run the painting network,
which gives us the transformed image

3) Finally, all the transformed frames are joined back
together using the opencv library in python.

The video we got using this approach was not smooth,
i.e. there was difference(mostly in texture) in two consec-
utive frames. This difference was due to the randomness
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in the initial parameters and that many optimal stroke
parameters are possible which give similar results. We
tried adding L2 loss between a current frame and it’s
previous frame in our loss function for videos, however
the results did not improve significantly, maybe owning
to the fact that the frames are much alike pixelwise so the
value of the added L2 loss is very less, the difference
between consecutive strokes is felt in the texture, i.e.
along the edges of strokes.

D. Code Optimization

We have built upon the code from the official imple-
mentation of [7]. In addition to the above major changes,
some changes changes to specific sections of code were
also made to make the code faster, work with better
accuracy.

1) The for loops present in files morphology.py
were removed and replaced with vectorised code,
yielding a speedup of 7% on the original code

2) We attempted to use the network vgg-19 instead
of vgg-16 in order to obtain deep representations
of the images

IV. EXPERIMENTS

Now that we have our modified set-up, we can de-
scribe the analysis we perform to assess the modified
model. Moreover, since the model is meant for produc-
ing aesthetically pleasing images, which mimic human
painting, we will observe many examples of rendered
images.

A. Metrics

Before performing any experiments, we need to define
metrics for how good the brush stroke representation of
an image is. To this end, we mainly analyse the metric
PSNR (peak signal to noise ratio). PSNR is most easily
observed as a function of the MSE (mean squared error),
where

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

[I(i, j)−K(i, j)]2

Now, PSNR is given by,

PSNR = 10 log10(
MAX2

I

MSE
)

= 20 log10(MAXI)− 10 log10(MSE)

where, MAXI is the maximum possible pixel value of
the image. So, PSNR is morally just the mean squared
error.

Fig. 7: Comparison between PSNR and G loss values for
different renderer architectures,(a) Light model provided
in zou et. al, (b) Heavy model provided in zou. et. al for
oil painting, (c) Our modified model & (d) DCGAN-32

B. Evaluating the modified rendering network

In order to compare performances, the performance
metric PSNR. The comparison of some of the trans-
formed images is shown in the table

In order to compare the PSNR, we followed the
procedure given in [7], and we considered the mean
PSNR obtained over all the images in the dataset and
plotted it against the number of epochs. Since PSNR
is a metric of similarity between images, higher PSNR
implies a better model. In the analysis here, we consider
four networks for the plotting of PSNR, loss curves 7
namely, the provided light, heavy models in [7] for oil
painting, dcgan32 and our model.

We can infer from the PSNR curves that the PSNR
for our model is approximately same as the heavy
model, and this fact is evident from the rendered images
seen before. Moreover, our model has three times less
parameters than the original model, making this model
all the more efficient.

C. Evaluating the effect of Laplacian Loss

Now that we have analysed the rendering aspect of our
modifications, we dive into style transfer. That is, given a
style image and a rendered (painted) image, the task boils
down to transferring this style to the rendered image. In
order to do this, we have modified the loss function to
include a laplacian term as described previously. This
analysis is carried out by comparing PSNR values for the
style transferred image. Low values of PSNR are good
for this application since the modified image needs to
have a component of the style, and hence needs to be
“far” from the original image.
Hence, we analyse two variations of our model for
style transfer, one with laplacian and one without. Upon
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Fig. 8: Comparison between PSNR and G loss values
for different weights of the Laplacian loss

observation of psnr for these variations we get the plots
shown in fig. 8.

This shows that models with laplacian losses are better
since a higher weight of laplacian loss reduces the PSNR
marginally. Upon plotting the loss curves as shown in fig.
8 we get that higher weight of laplacian is correlated with
a higher value of loss function, which is expected since
we are adding an extra term in the loss and the metric
to be actually compared is the PSNR.

D. Speed-ups observed

Upon slight modifications to the code as described
earlier, and running the code several times on google
colab with T4 GPU runtime, and taking the mean, we
observe the following speedups :

1) The time for rendering an image in our model,
when compared with the original heavy model
for oil-painting, gives a speed-up of approximately
5% (here, the flags save_jpg and save_video
have been set to False)

2) In our model, upon vectorising the for loops given
in morphology.py, we observe a speed-up of
7%

Note that the running time of our model is still sig-
nificantly slower than the light model provided in [7],
so there is a trade-off between psnr and running time,
number of learnable parameters. Now, moving on to
discussion of the results we have obtained.

V. DISCUSSION

We build upon the progress on the nature of hu-
man painting using differentiable stroke rendering. The
method can generate realistic artworks for most reference
images. Moreover, we examine style transfer on these
rendered images, exploring the effects of a laplacian loss
term. We further extend this by performing style transfer
of videos. We achieve some amount of code optimization

by reducing the running time of the original code by 7%.
Moreover, we propose a modified model, which takes
three times less parameters than the original model and
runs with a 5% speedup.
Some directions of future progress include adding a
precomputed flow function in order to get smoother
videos. Further, the idea of neural style transfer in its
genesis [1], crucially used the fact that a style loss term
is added in the loss function, which is the grammian of
a deep feature representation. But why do we restrict
ourselves to only second order moments in the form
of quadratic kernels? This question has been examined
in [4], which showed style transfer using higher order
moments.
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(a) Original Image (b) Rendered using
DCGAN 32

(c) Rendered using the original
network

(d) Rendered using our net-
work

Fig. 9: Showing Rendering using different network architectures

(a) Original Image
(b) Rendered using
DCGAN 32

(c) Rendered using the original
network

(d) Rendered using our net-
work

Fig. 10: Showing Rendering using different network architectures

(a) Original Image (b) Rendered using
DCGAN 32

(c) Rendered using the original
network

(d) Rendered using our net-
work

Fig. 11: Showing Rendering using different network architectures
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(a) Original Image

(b) Style Image
(c) Original Renderer (d) Our Renderer with Lapla-

cian

Fig. 12: Showing Style transfer using our network and the original network

(a) Original Image
(b) Style Image (c) Original Renderer (d) Our Renderer with Lapla-

cian

Fig. 13: Showing Style transfer using our network and the original network

(a) Original Image
(b) Style Image

(c) Original Renderer (d) Our Renderer with Lapla-
cian

Fig. 14: Showing Style transfer using our network and the original network
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