
Farzi Van Gogh

1Farzi Van Gogh

Task
description

• Making a Renderer- Generate a
painted version of an input
image, given a specific painting
style (oil painting, water-color).

• Neural Style Transfer- render an
input image in the style of a given
style image.

2Farzi Van Gogh

Approach

• We built on the paper 'Stylized
Neural Painting' by Zhengxia Zou
and Co.

• The paper's approach has two
parts training a renderer and
searching for stroke parameters.

Farzi Van Gogh 3

Renderer

• The renderer has two parts, the shading network
and the rasterization network

• The shading network is used to generate the
stroke colormap.

• The rasterization network is used for generating
the stoke silhouette.

Farzi Van Gogh 4

Image generation

• For making the final rendered image, we start
with a set of stoke parameters.

• We generate an image by feeding these
parameters into the trained renderer.

• We now optimize these parameters
using gradient descent.

Farzi Van Gogh 5

Loss function

• For rendering the loss used is the sum of pixel l1 loss and a translation loss which the
paper names as sinkhorn loss.

• For style transfer we add a term of style loss to the above losses.

• The style loss is calculated using the Grammian of the rendered image and the style
image after passing through some layers of a pretrained VGG16 network.

Farzi Van Gogh 6

Major
Contributions

• Modifying loss function using Laplacian

• Using a lightweight renderer architecture

• Extending the implementation for videos

Farzi Van Gogh 7

Laplacian

• Inspired by Laplacian-Steered
Neural Style Transfer by Shaohua Li and Co.

• Incorporated Laplacian loss within neural
style transfer to accentuate and sharpen
edge features for enhanced visual definition.

• Utilized the convolution process with a
specified matrix 'D' to approximate the
Laplacian of an image.

8

Laplacian Loss

• Given two images x and y, we adapted the loss function by incorporating the contribution
of Llap- a metric used to assess the dissimilarity between the Laplacians of images x and y

• This adjustment involved strategically introducing Llap after specific layers in the VGG
network, and taking their sum to get a modified loss function

Farzi Van Gogh 9

Farzi Van Gogh 10

Without Laplacian

With Laplacian

Comparing
effect of
Laplacian
Loss

Farzi Van Gogh 11

Lightweight
Renderer

• We designed both the shader and
a rasterization network for a new
renderer.

• We significantly brought down
the number of parameters from
18.1 million to 5.4 million,
roughly 3 times.

• We observe an approx. Speedup
of 5% in the rendering of images

Farzi Van Gogh 12

Farzi Van Gogh 13

Our Render
Network

Farzi Van Gogh 14

Water-color Rendered Image Style Transferred Image

Comparison
of Models

Farzi Van Gogh 15

Video Style Transfer

• We extended this style transfer framework to
videos.

• We added another interface that takes a video
and renders it into a particular input style

Farzi Van Gogh 16

Farzi Van Gogh 17

Other contributions

Farzi Van Gogh 18

We sped up the existing code by adding vector operations in place of loops
wherever possible, resulting in reduction of running time, a 7% speedup

We tried using other networks like VGG19 for calculating the style loss, we
observed similar results across different architectures.

Changes
made in
code

• Source Code Stylized Neural Painting

• In loss.py added code for laplacian loss in
VGGStyleLoss class.

• Created the classes Shader, Rasterizer and
Light-Net for building our renderer model.

• Added VideoPainter class for implementing
rendering transfer over Videos.

• Created demo_video.py as an interface for
video rendering.

Farzi Van Gogh 19

https://github.com/jiupinjia/stylized-neural-painting

Work
Division

• Ideation/Searching for related papers – Akshat, Soham

• Analysing Base paper model and reproducing – Akshat, Ayush

• Introduction of Laplacian – Ayush, Soham

• Application to videos – Sankalan, Soham

• New model with fewer parameters – Ayush, Sankalan

• Trying new architecture like VGG19 in base model – Akshat, Sankalan

• Code Optimization like vectorization – Andreas, Sankalan

• Writing of scripts for data generation – Akshat, Andreas

• Preparation of presentation/report - Andreas, Soham

• Writing scripts for plotting - Andreas, Ayush

• All team members have contributions in all the above topics but people specializing
in the corresponding points have been mentioned 20

	Slide 1: Farzi Van Gogh
	Slide 2: Task description
	Slide 3: Approach
	Slide 4: Renderer
	Slide 5: Image generation
	Slide 6: Loss function
	Slide 7: Major Contributions
	Slide 8: Laplacian
	Slide 9: Laplacian Loss
	Slide 10
	Slide 11: Comparing effect of Laplacian Loss
	Slide 12: Lightweight Renderer
	Slide 13
	Slide 14
	Slide 15: Comparison of Models
	Slide 16: Video Style Transfer
	Slide 17
	Slide 18: Other contributions
	Slide 19: Changes made in code
	Slide 20: Work Division

