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Task 
description

• Making a Renderer- Generate a 
painted version of an input 
image, given a specific painting 
style (oil painting, water-color).

• Neural Style Transfer- render an 
input image in the style of a given 
style image.
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Approach

• We built on the paper 'Stylized 
Neural Painting' by Zhengxia Zou 
and Co.

• The paper's approach has two 
parts training a renderer and 
searching for stroke parameters.
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Renderer

• The renderer has two parts, the shading network 
and the rasterization network

• The shading network is used to generate the 
stroke colormap.

• The rasterization network is used for generating 
the stoke silhouette.
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Image generation

• For making the final rendered image, we start 
with a set of stoke parameters.

• We generate an image by feeding these 
parameters into the trained renderer.

• We now optimize these parameters 
using gradient descent.
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Loss function

• For rendering the loss used is the sum of pixel l1 loss and a translation loss which the 
paper names as sinkhorn loss.

• For style transfer we add a term of style loss to the above losses.

• The style loss is calculated using the Grammian of the rendered image and the style 
image after passing through some layers of a pretrained VGG16 network.
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Major 
Contributions

• Modifying loss function using Laplacian

• Using a lightweight renderer architecture

• Extending the implementation for videos
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Laplacian 

• Inspired by Laplacian-Steered 
Neural Style Transfer by Shaohua Li and Co.

• Incorporated Laplacian loss within neural 
style transfer to accentuate and sharpen 
edge features for enhanced visual definition.

• Utilized the convolution process with a 
specified matrix 'D' to approximate the 
Laplacian of an image.
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Laplacian Loss

• Given two images x and y, we adapted the loss function by incorporating the contribution 
of Llap- a metric used to assess the dissimilarity between the Laplacians of images x and y

• This adjustment involved strategically introducing Llap after specific layers in the VGG 
network, and taking their sum to get a modified loss function
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Without Laplacian

With Laplacian



Comparing 
effect of 
Laplacian 
Loss
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Lightweight 
Renderer

• We designed both the shader and 
a rasterization network for a new 
renderer.

• We significantly brought down 
the number of parameters from 
18.1 million to 5.4 million, 
roughly 3 times.

• We observe an approx. Speedup 
of 5% in the rendering of images
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Our Render 
Network
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Water-color Rendered Image Style Transferred Image



Comparison 
of Models
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Video Style Transfer

• We extended this style transfer framework to 
videos.

• We added another interface that takes a video 
and renders it into a particular input style
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Other contributions
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We sped up the existing code by adding vector operations in place of loops 
wherever possible, resulting in reduction of running time, a 7% speedup

We tried using other networks like VGG19 for calculating the style loss, we 
observed similar results across different architectures.



Changes 
made in 
code

• Source Code Stylized Neural Painting

• In loss.py added code for laplacian loss in 
VGGStyleLoss class.

• Created the classes Shader, Rasterizer and 
Light-Net for building our renderer model.

• Added VideoPainter class for implementing 
rendering transfer over Videos.

• Created demo_video.py as an interface for 
video rendering.

Farzi Van Gogh 19

https://github.com/jiupinjia/stylized-neural-painting


Work 
Division 

• Ideation/Searching for related papers – Akshat, Soham

• Analysing Base paper model and reproducing – Akshat, Ayush

• Introduction of Laplacian – Ayush, Soham

• Application to videos – Sankalan, Soham

• New model with fewer parameters – Ayush, Sankalan

• Trying new architecture like VGG19 in base model – Akshat, Sankalan

• Code Optimization like vectorization – Andreas, Sankalan

• Writing of scripts for data generation – Akshat, Andreas

• Preparation of presentation/report - Andreas, Soham

• Writing scripts for plotting - Andreas, Ayush

• All team members have contributions in all the above topics but people specializing 
in the corresponding points have been mentioned 20
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