A CS 310 presentation

Complexity Hierarchy

Soham Joshi

10.1.1 Problems Solvable in Polynomial Time

A Turing machine M is said to be of time complezity T(n) [or to have “running
time 7°(n)”] if whenever M is given an input w of length n, M halts after making
at most T'(n) moves, regardless of whether or not M accepts. This definition
applies to any function T'(n), such as T'(n) = 50n? or T'(n) = 3™ + 5n?; we
shall be interested predominantly in the case where T'(n) is a polynomial in n.
We say a language L is in class P if there is some polynomial T'(n) such that
L = L(M) for some deterministic TM M of time complexity T'(n).

10.1.3 Nondeterministic Polynomial Time

A fundamental class of problems in the study of intractability is those problems
that can be solved by a nondeterministic TM that runs in polynomial time.
Formally, we say a language L is in the class NP (nondeterministic polynomial)
if there is a nondeterministic TM M and a polynomial time complexity T'(n)
such that L = L(M), and when M is given an input of length n, there are no

sequences of more than 7'(n) moves of M.

o Qqe_g ced_' TN = l\bf\—dd' M
= ¢ c N

TSP

The input to TSP is the same as to MWST, a graph with integer weights on
the edges such as that of Fig. 10.1, and a weight limit W. The question asked
is whether the graph has a “Hamilton circuit” of total weight at most W. A
Hamilton circuit is a set of edges that connect the nodes into a single cycle,

On the other hand, if we had a nondeterministic computer, we could guess a,
permutation of the nodes, and compute the total weight for the cycle of nodes in
that order. If there were a real computer that was nondeterministic, no branch
would use more than O(n) steps if the input was of length n. On a multitape
NTM, we can guess a permutation in O(n?) steps and check its total weight in

a similar amount of time. Thus, a single-tape NTM can solve the TSP in O(n*)
time at most. We conclude that the TSP is in N'P.

Polytime reductions

P, — Construct ™ P2 — Decide yes
instance instance

no

Figure 10.2: Reprise of the picture of a reduction

Caveak : 1f jafmance of Kige m —2 2™ then fo e 0,0 ¢F s possiblle
i‘ time for eonghucton ;4 fcla U'\Fuk si2e)

The correct restriction to place on the translation from P; to P is that it
requires time that is polynomial in the length of its input. Note that if the
translation takes time O(m?) on input of length m, then the output instance
of P» cannot be longer than the number of steps taken, i.e., it is at most ecm?
for some constant ¢. Now, we can prove that if P, is in P, then so is P;.

NP Completeness

L is NP-complete if the following statements are true about L:

1. Lisin NP.

2. For every language L' in AP there is a polynomial-time reduction of L’
to L.

Theorem 10.4: If P, is NP-complete, P; is in AP, and there is a polynomial-
time reduction of P, to P,, then P is NP-complete.

?\‘ooe . Follows loa com posifion of f‘l\"ﬂmhj A7k a ro()\\]nmm’d ,

Theorem 10.5: If some NP-complete problem P is in P, then P = NP.

PROOF: Suppose P is both NP-complete and in P. Then all languages L in
NP reduce in polynomial-time to P. If P isin P, then L is in P, as we discussed
in Section 10.1.5. O

SAT isin NP

The boolean expressions are built from:

1. Variables whose values are boolean; i.e., they either have the value 1 (true)
or 0 (false).

2. Binary operators A and V, standing for the logical AND and OR of two
expressions.

3. Unary operator — standing for logical negation.

4. Parentheses to group operators and operands, if necessary to alter the
default precedence of operators: — highest, then A, and finally V.

The satisfiability problem is:

¢ Given a boolean expression, 1s it satisfiable?

1. The symbols A, V, -, (, and) are represented by themselves. } enco &"‘2

2. The variable x; is represented by the symbol z followed by 0’s and 1’s
that represent z in binary.

Theorem 10.9: (Cook’s Theorem) SAT is NP-complete.

. Polynomial- H

time SAT
W converter E Mw decide yes
for M
no

Figure 10.5: If SAT is in P, then every language in AP could be shown to be
in P by a DTM designed in this manner

All of AP

g

DHC

J

<«

Case>

Figure 10.12: Reductions among NP-complete problems

Beyond Classes P and NP

NP-complete problems

Co-NP ?

e Languages whose complement is NP '

 Even if P is not equal to NP, NP and co-NP oo A
could still be equal, but we haven’t found
even one NP complete problem whose
o Complements of
Complement 1S 1IN CO'NP NP-complete problems

Figure 11.1: Suspected relationship between co-AP and other classes of lan-
guages

Theorem 11.2: NP = co-NP if and only if there is some NP-complete prob-
lem whose complement is in NP.

(=) sAT en?
(&) vee PTIME veduchions

PSPACE (PS) and NPS

A polynomial-space-bounded Turing machine is suggested by Fig. 11.2. There
is some polynomial p(n) such that when given input w of length n, the TM
never visits more than p(n) cells of its tape. By Theorem 8.12, we may assume
that the tape is semi-infinite, and the TM never moves left from the beginning

of its input.

Define the class of languages PS (polynomial space) to include all and only
the languages that are L(M) for some polynomial-space-bounded, deterministic
Turing machine M. Also, define the class N'PS (nondeterministic polynomial
space) to consist of those languages that are L(M) for some nondeterministic,
polynomial-space-bounded TM A{. Evidently PS C NPS, since every deter-
ministic TM is technically nondeterministic also. However, we shall prove the

surprising result that PS = N'PS.1

Finite
control

~

<€ input w —™
n cells

—~+— cells ever used -
p(n) cells

Figure 11.2: A TM that uses polynomial space

Adding these folks to our hierarchy

To start, the relationships P C PS and NP C NPS should be obvious. The
reason is that if a TM makes only a polynomial number of moves, then it uses
no more than a polynomial number of cells; in particular, it cannot visit more
cells than one plus the number of moves it makes. Once we prove PS = NPS,
we shall see that in fact the three classes form a chain of containment: P C

NP C PS.

Theorem 11.3: If M is a polynomial-space-bounded TM (deterministic or
nondeterministic), and p(n) is its polynomial space bound, then there is a con-
stant ¢ such that if M accepts its input w of length n, it does so within c1+7(n}
moves.

Theorem 11.4: If L is a language in PS (respectively N'PS), then L is ac-
cepted by a polynomial-space-bounded deterministic (respectively nondeter-
ministic) TM that halts after making at most c?(™ moves, for some polynomial
g(n) and constant ¢ > 1.

Theorem 11.5: (Savitch’s Theorem) PS = N'PS.

Recursive

Figure 11.5: Known relationships among classes of languages

PS Completeness

We define a problem P to be complete for PS (PS-complete) if:

1. Pisin PS.

2. All languages L in PS are polynomial-time reducible to P. (wka rot f° :‘\‘4{7 p
0n 9)

Theorem 11.6: Suppose P is a PS-complete problem. Then: < Motivation .&f

a) If P is in P, then P = PS. Imtv\a (ola{:ime.
b) If P is in N'P, then N'P = PS. N ¢g comofebenese

Example of PS Complete (QBF)

QRF: Y, 3 cvmntiﬁ‘ea(boolean formulats
BBF problem : 1 the value of e formda,d ?

Theorem 11.10: QBF is in PS.

Theorem 11.11: The problem QBF is PS-complete.

Adding Randomisation (RP and ZPP)

Finite

FU‘ ey WQ\’A U\)) i{ is «CLQ? *QA control

with fmw.,u.-;& ro /\J \\//ﬂ

NOV\ ‘Muﬂ\iﬂilf\z— QCL&?]“'\CQ \$ Input ////
&im(lo.r ED ‘(&V\J&W\iZ‘QA Random bits ... 00101000101001000010,0411
acceglance with 3> Q.

o

Scratch tape(s)

Figure 11.6: A Turing machine with the capability of using randomly “gener-
ated” numbers

RP Acce,rtance Rules

. If w is not in L, then the probability that M accepts w is 0.

. If w is in L, then the probability that M accepts w is at least 1/2.

. There is a polynomial T'(n) such that if input w is of length n, then all
runs of M, regardless of the contents of the random tape, halt after at
most T'(n) steps.

of running time, we may say that a randomized TM is “Monte-Carlo” if it either
accepts with probability 0 or accepts with probability at least 1/2, with nothing
in between. Point (3) simply addresses the running time, which is independent
of whether or not the TM is “Monte-Carlo.”

Membership for RP

1. If wis not in L, then our run will surely not lead to acceptance of w.

2. If wisin L, there is at least a 50% chance that w will be accepted.

Theorem 11.16: If L is in RP, then for any constant ¢ > 0, no matter how
small, there is a polynomial-time randomized algorithm that renders a decision
whether its given input w is in L, makes no false-positive errors, and makes
false-negative errors with probability no greater than e¢. O

‘(’i (Rz(le.afcﬂi ﬁa“"‘j}

ZPP (zero error, probabilistic, polynomial)

always halts, and has an expected time to halt that is some polynomial in the
length of the input. This TM accepts its input if it enters and accepting state
(and therefore halts at that time), and it rejects its input if it halts without ac-
cepting. Thus, the definition of class ZPP is almost the same as the definition
of P, except that ZPP allows the behavior of the TM to involve randomness,
and the expected running time, rather than the worst-case running time is

meagured. | | | T Le2P, L e PP
Theorem 11.17: ZPP =RP N co-RP.

Relation to P and NP

Theorem 11.17 tells us that ZPP C RP. We can place these classes between
P and NP by the following simple theorems.

Theorem 11.18: P C ZP7P.

PROOF: Any deterministic, polynomial-time bounded TM is also a Las-Vegas,
polynomial-time bounded TM, that happens not to use its ability to make
random choices. 0O

Theorem 11.19: RP C NP.

Figure 11.8: Relationship of ZPP and RP to other classes

